
AJ Chem Academy

Reg.No: UDYAM-TN-27-0019301

CSIR-NET | GATE | JAM | CUET-PG | TRB | BARC Chemistry Coaching

CSIR-UGC-NET (Chemical Science) - DEC-2013

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching
- ✓ PG | Polytechnic TRB Chemistry Coaching

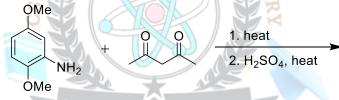
www.csircoaching.com

Features

- ➤ 300 ++ Live Classes
- ➤ 600 ++ Concept Wise Tests
- > 50 ++ Chapter Wise Tests
- > 50 ++ Model Tests
- ➤ 2000 ++ Problem Discussions
- > Recorded Videos

- ➤ A Well-Defined Curriculum
- ➤ A Strong Subject Foundation
- > A Refined Learning Methodology
- > Updated Study materials
- > Freshers Can easily understand
- Question banks

ajchemacademy@gmail.com



Q.21 – Q.70 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: – 0.5). You are required to Answer Maximum 35 Questions.

- 21. L-DOPA is used for the treatment of
 - (a) Tuberculosis
- (b) Parkinson's disease
- (c) Diabetes
- (d) Cancer
- 22. In the IR spectrum of p-nitrophenyl acetate, the carbonyl absorption band appears at
 - (a) 1660 cm^{-1}
- (b) 1700 cm^{-1}
- (c) 1730 cm^{-1}
- (d) 1770 cm^{-1}
- 23. The major product formed in the reaction of styrene with an excess of lithium in liquid ammonia and t-butyl alcohol is:
 - (a)
- (b)
- (c)

(b)

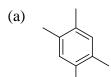
- (d)
- 24. The major product formed in the following reaction is:

(a) OMe ONE ONE ONE ONE

OMe N H OMe

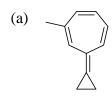
(c) OMe NOMe

- (d) OMe HO NH₂
- 25. For estrone, among the statements P-R, the correct ones are
 - P. It is a steroidal hormone
 - Q. It has two hydroxyl groups
 - R. It has one ketone and one hydroxyl groups
 - (a) P, Q and R
- (b) P and Q
- (c) P and R
- (d) Q and R
- 26. An organic compound having the molecular formula $C_{10}H_{14}$ exhibited two singlets in the 1H -NMR spectrum, and three signals in the ^{13}C -NMR spectrum.

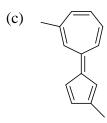

The compound is:

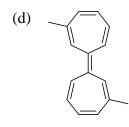
www.csircoaching.com

Ø



(b)


(c)


(d)

27. Amongst the following, the compound which has the lowest energy barrier for the cis-trans isomerisation is:

(b)

28. The **IUPAC** name of the compound given below is

- (a) (2E, 4E)-3-chlorohexa-2,4-diene-1,6-diol
- (b) (2Z, 4E)-3-chlorohexa-2,4-diene-1,6-diol
- (c) (2Z, 4Z)-4-chlorohexa-2,4-diene-1,6-diol
- (d) (2E, 4Z)-4-chlorohexa-2,4-diene-1,6-diol
- 29. The major product formed in the following reaction is:

30. The constituent amino acids present in the following dipeptide, respectively are

- (a) (R)-aspartic acid and (S)-lysine
- (b) (S)-aspartic acid and (R)-lysine
- (c) (R)-glutamic acid and (S)-arginine
- (d) (S)-glutamic and (S)-arginine

Tiruchirappalli - 620 024

31. A suitable organo catalyst for enantioselective synthesis of Wieland-Miescher ketone (P) is

P (optically active)

- (a) (-)-proline
- (b) (+)-menthone
- (c) guanidine
- (d) (+)-BINOL
- 32. For acylation with acetic anhydride/triethylamine, and oxidation with chromium trioxide of the trans and cis-alcohols P and Q, the correct statement is

- (a) P undergoes acylation as well as oxidation faster than Q
- (b) Q undergoes acylation as well as oxidation faster than P
- (c) P undergoes acylation faster than Q, whereas Q undergoes oxidation faster than P
- (d) Q undergoes acylation faster than P, whereas P undergoes oxidation faster than Q
- 33. The two benzylic hydrogens H_y and H_y in the compounds I and II, are

$$\begin{array}{c|c} & & & & \\ & &$$

- (a) diastereotopic in I and enantiotopic in II (b) diastereotopic in II and enantiotopic in I
- (c) diastereotopic in both I and II
- (d) enantiotopic in both I and II
- The following reaction proceeds through a **34.**

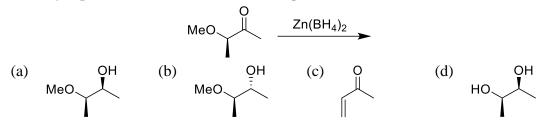
$$\Delta$$
 Δ CHO

- (a) 1,3-sigmatropic rearrangement
- (b) 2,3-sigmatropic rearrangement
- (c) 3,3-sigmatropic rearrangement
- (d) 3,5-sigmatropic rearrangement
- 35. The number of nodes present in the highest occupied molecular orbital of 1, 3, 5-hexatriene in its ground state is
 - (a) One

(b) two

(c) three

- (d) four
- 36. Deuterium kinetic isotope effect for the following reaction was found to be 4.0.



ajchemacademy@gmail.com

Based on this information, mechanism of the reaction is

$$\begin{array}{c|c} & \text{H(D)} & \text{I} \\ & \oplus & \text{I} \\ \hline & \text{NMe}_3 \end{array} \xrightarrow{\text{MeOH}} \begin{array}{c} & \text{KOH} \\ & & \text{MeOH} \end{array}$$

- (a) E₁
- (b) E₂
- (c) E_{1CR}
- (d) free radical
- 37. The major product formed in the following reaction is:

- 38. The bond order of the metal-metal bond in the dimeric complex $[Re_2Cl_4(PMe_2Ph)_4]^+$ is
 - (a) 4.0

- (b) 3.5
- (c) 3.0

(d) 2.5

- 39. The reaction of FeCl₃. 6H₂O with SOCl₂ yields,
 - (a) FeCl_{2(s)}, SO_{2(g)} and HCl_(g)
- (b) $\operatorname{FeCl}_{3(s)}$, $\operatorname{SO}_{2(g)}$ and $\operatorname{HCl}_{(\operatorname{liq})}$
- (c) $FeCl_{2(s)}$, $SO_{2(s)}$ and $HCl_{(g)}$
- (d) $\operatorname{FeCl}_{3(s)}$, $\operatorname{SO}_{2(g)}$ and $\operatorname{HCl}_{(g)}$
- 40. Patients suffering from Wilson's disease have
 - (a) Low level of Cu-Zn superoxide dismutase 01030
 - (b) High level of Cu-Zn superoxide dismutase
 - (c) Low level of copper-storage protein, ceruloplasmin
 - (d) High level of copper-storage protein, ceruloplasmin
- 41. High dose of dietary supplement ZnSO₄ for the cure of Zn deficiency
 - (a) Reduces myoglobin
- (b) Increases iron level in blood
- (c) Increases copper level in brain (d) Reduces copper, iron and calcium levels in body
- 42. Which of the following in **NOT** suitable as catalyst for hydroformylation?
 - (a) $HCo(CO)_4$
- (b) $HCo(CO)_3PBu_3$
- (c) $HRh(CO)(PPh_3)_3$ (d) $H_2Rh(PPh_3)_2Cl$
- 43. Commonly used scintillator for measuring radiation is
 - (a) NaI(AI)
- (b) NaI(TI)
- (c) CsI(TI)
- (d) CsI(AI)
- 44. A sample of aluminium ore (having no other metal) is dissolved in 50 mL of 0.05 M EDTA. For the titration of unreacted EDTA, 4 mL of 0.05 M MgSO₄ is required. The percentage of **AI** in the sample is:
 - (a) 27

(b) 31

(c) 35

(d) 40

Ø

45. In a cluster, $H_3CoRu_3(CO)_{12}$, total number of electrons considered to be involved in

its formation is

(a) 57

(b) 60

(c) 63

(d)72

46. Among the following, the correct acid strength trend is represented by:

(a) $[Al(H_2O)_6]^{3+} < [Fe(H_2O)_6]^{3+} < [Fe(H_2O)_6]^{2+}$

(b) $[Fe(H_2O)_6]^{3+} < [Al(H_2O)_6]^{3+} < [Fe(H_2O)_6]^{2+}$

(c) $[Fe(H_2O)_6]^{2+} < [Fe(H_2O)_6]^{3+} < [Al(H_2O)_6]^{3+}$

(d) $[Fe(H_2O)_6]^{2+} < [Al(H_2O)_6]^{3+} < [Fe(H_2O)_6]^{3+}$

47. Among the molten alkali metals, the example of an immiscible pair (in all proportions) is

(a) K and Na

(b) K and Cs

(c) Li and Cs

(d) Rb and Cs

48. Among the following, an example of a hypervalent species is

(a) BF₃. OEt₂

(b) SF_4 (c) $[PF_6]^-$

(d) Sb_2S_3

49. An octahedral metal ion M^{2+} has magnetic moment of 4.0 B.M. The correct combination of metal ion and d-electron configuration is given by

(a) Co^{2+} , $t_{2g}^5 e_g^2$

(b) Cr^{2+} , $t_{2g}^4 e_g^2$ (c) Mn^{2+} , $t_{2g}^3 e_g^1$

(d) Fe^{2+} , $t_{2g}^4 e_g^2$

50. According to VSEPR theory, the geometry (with lone pair) around the central iodine in I_3^+ and I_3^- ions respectively are

(a) Tetrahedral and tetrahedral YAM-TN-27-00193U

(b) trigonal bipyramidal and trigonal bipyramidal

(c) tetrahedral and trigonal bipyramidal

(d) Tetrahedral and octahedral

51. Treatment of CIF₃ with SbF₅ leads to the formation of a/an

(a) polymeric material

(b) covalent cluster

(c) ionic compound

(d) Lewis acid-base adduct

52. The reason for the chemical inertness of gaseous nitrogen at room temperature is best given by its

(a) high bonding energy only

(b) electronic configuration

(c) HOMO-LUMO gap only

(d) high bond energy and HOMO-LUMO gap

53. Two tautomeric forms of phosphorus acid are:

(a) $\begin{array}{c} HO-P \\ HO \end{array}$ OH and $\begin{array}{c} HO \\ P \end{array}$ OH

(b) HO-P and OH HOU



- 54. The correct thermodynamics relation among the following is:
 - (a) $\left(\frac{\partial U}{\partial V}\right)_{S} = -P$ (b) $\left(\frac{\partial H}{\partial V}\right)_{S} = -P$ (c) $\left(\frac{\partial G}{\partial V}\right)_{S} = -P$ (d) $\left(\frac{\partial A}{\partial V}\right)_{S} = -S$
- 55. The boiling point of a solution of non-volatile solid is higher than that of the pure solvent. It always indicates that
 - (a) The enthalpy of the solution is higher than that of the pure solvent
 - (b) The entropy of the solution is higher than that of the pure solvent
 - (c) The Gibbs free energy of the solution is higher than that of the pure solvent
 - (d) The internal energy of the solution is higher than that of pure solvent
- 56. According to Arrhenius equation (k = rate constant and T = temperature)
 - (a) ln k decreases linearly with 1/T (b) ln k decreases linearly with T (c) ln k increases linearly with 1/T (d) ln k increases linearly with T
- 57. The angle at which the first order Bragg reflection is observed from (110) plane in a simple cubic unit cell of side 3.238 Å, when chromium K_{α} radiation of wavelength 2.29 Å is used, is
 - (a) 30° (b) $45^{\circ}_{M-TN-27-001}$ (c) 60° (d) 90°
- 58. The orbital with two radial and two angular nodes is
 - (a) 3p (b) 5d (c) 5f (d) 8d
- 59. Michael Faraday observed that the colour of colloidal suspensions of gold nanoparticles changes with the size of the nanoparticles. This is because
 - (a) Gold forms complex with the solvent
 - (b) Band gap of gold changes with size of the nanoparticle.
 - (c) Gold in nano crystalline form undergoes transmutation to other elements
 - (d) Colloidal suspensions diffract light
- 60. The energy of 2s and 2p orbitals is the same for
 - (a) Li (b) Li^{2+} (c) Be^{2+} (d) H^{-}
- 61. If a homo nuclear diatomic molecule is oriented along the z-axis, the molecular orbital formed by linear combination of P_x orbitals of the two atoms is
 - (a) σ (b) σ^* (c) π
- 62. A reaction contains a mixture of N_2 , H_2 and NH_3 in equilibrium ($K_P = 3.75 \text{ atm}^{-2}$). If sufficient He is introduced into the reactor to double the total

	pressure, the value of K_P at the new equilibrium would be					
	(a) 0.94 atm^{-2} (b) 3.75 atm^{-2} (c) 7.50 atm^{-2} (d) 15.00 atm^{-2}					
63.	The volume of a gas absorbed on a solid surface is 10.0 ml, 11.0 ml, 11.2 ml					
	14.5 ml and 22.5 ml at 1.0, 2.0, 3.0, 4.0 and 5.0 atm, pressure, respectively					
	These data are best represented by					
	(a) Gibb's isotherm (b) Langmuir isotherm					
	(c) Freundlich isotherm (d) BET isotherm					
64.	A compound of M and X atoms has a cubic unit cell. M atoms are at the corners and					
	body center position and X atoms are at face center positions of the cube. The					
	molecular formula of the compound is					
	(a) MX (b) MX_2 (c) M_3X_2 (d) M_2X_3					
65.	When Frenkel defects are created in an otherwise perfect ionic crystal, the density of					
	the ionic crystal					
	(a) increases (b) decreases					
	(c) remains same (d) oscillates with the number of defects					
66.	The molecule in which the bond order increases upon addition of an electron is					
	(a) O_2 (b) B_2 (c) P_2					
67.	In a potentiometric titration, the end point is obtained by observing					
	(a) change in colour (b) jump in potential					
	(c) increase in current (d) increase in turbidity					
68.	Electrolysis of an aqueous solution of 1.0 M NaOH results in					
	(a) Na at the cathode and O_2 at the anode					
	(b) H_2 at the cathode and O_2 at the anode					
	(c) Na and H ₂ at the cathode, and O ₂ at the anode					
	(d) O_2 at the cathode and H_2 at the anode					
69.	The cell voltage of Daniel cell $[Zn \mid ZnSO_4(aq) \mid CuSO_4(aq) \mid Cu]$ is 1.07 V. If					
	reduced potential of $Cu^{2+} Cu$ is 0. 34 V, the reduction potential of $Zn^{2+} Zn$ is					
	(a) 1.141 V (b) -1.41 V (c) 0.73 V (d) -0.73 V					
70.	In the mechanism of reaction, $H_2 + Br_2 \rightarrow 2HBr$, the first step is					
	(a) dissociation of H ₂ into H• radicals (b) dissociation of Br ₂ into Br• radicals					
	(c) reaction of H• radical with Br ₂ (d) reaction of Br• radical with H ₂					
	Q.71 - Q.145 Multiple Choice Question (MCQ), carry FOUR marks					
	each (for each wrong answer: -1). You are required to Answer					

Maximum 25 Questions.

For an electronic configuration of two non-equivalent π electronics $[\pi^1, \pi^1]$, which **71.** of the following terms is **not possible?**

(a) $^{1}\Sigma$

(b) $^{3}\Sigma$

(c) $^{3}\Delta$

(d) $^{3}\phi$

Consider a two-dimensional harmonic oscillator with potential energy, $V_{(x,y)} =$ **72.** $\frac{1}{2}k_xx^2 + \frac{1}{2}k_yy^2$. If $\psi_{nx}(x)$ and $\psi_{ny}(y)$ are the eigen-solutions and E_{nx} and E_{ny} are the eigen-values of harmonic oscillator problem in x and y direction with potential $\frac{1}{2}k_xx^2$ and $\frac{1}{2}k_yy^2$ respectively, the wave function and eigen-values of the above twodimensional harmonic oscillator problem are:

(a) $\Psi_{nx,ny} = \Psi_{nx}(x) + \Psi_{ny}(y)$ (b) $\Psi_{nx,ny} = \Psi_{nx}(x)\Psi_{ny}(y)$

(c) $\Psi_{nx,ny} = \psi_{nx}(x)\psi_{ny}(y)$

 $E_{nx,ny} - L_{nx-ny}$ $(d) \quad \Psi_{nx,ny} = \Psi_{nx}(x) + \Psi_{ny}(y)$

 $E_{nx,nv} = E_{nx}E_{nv}$

- $E_{nx,ny} = E_{nx} + E_{ny}$ $\psi_{nx,ny} = \psi_{nx}(x)\psi_{ny}(y)$ $E_{nx,ny} = E_{nx} + E_{nv}$ **73.**
- The quantum mechanical virial theorem for a general potential $V_{(x,y,z)}$ is given by $\langle 2T \rangle = \langle x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial v} + z \frac{\partial v}{\partial z} \rangle, \quad \text{Where} \quad T \quad \text{is the kinetic energy operator and} \quad \langle \quad \rangle$ indicates expectation value. This leads to the following relation between the expectation value of kinetic energy and potential energy for a quantum mechanical harmonic oscillator problem with potential, $\mathbf{v} = \frac{1}{2}\mathbf{k}_x\mathbf{x}^2 + \frac{1}{2}\mathbf{k}_y\mathbf{y}^2 + \frac{1}{2}\mathbf{k}_z\mathbf{z}^2$

(a) $\langle T \rangle = \langle V \rangle$

(b) $\langle T \rangle = -\frac{1}{2} \langle V \rangle$ (c) $\langle T \rangle = \frac{1}{2} \langle V \rangle$ (d) $\langle T \rangle = -\langle V \rangle$

Consider a particle in a one-dimensional box of length 'a' with the following **74.** potential

$$\mathbf{V}(\mathbf{x}) = \infty \qquad \mathbf{x} < 0$$

$$V(x) = \infty$$
 $x > a$

$$V(x) = 0 \qquad 0 \le x \le a/2$$

$$V(x) = V_1 \qquad a/2 \le x \le a$$

Starting with the standard particle in a box Hamiltonian as the zeroth order Hamiltonian and the potential of V_1 from 'a/2' to 'a' as a perturbation, the firstorder energy correction to the ground state is

(a) V₁

Tiruchirappalli - 620 024

(b) $V_1/4$

 $(c) - V_1$

(d) $V_1/2$

Ø

The most probable value of 'r' for an electron in 1s orbital of hydrogen atom is *75.*

	(a) $a_0/2$	(b) a ₀	(c) $\sqrt{2}a_0$	(d) $3a_0/2$
76.	The angular momen	ntum operator $\widehat{\mathbf{L}_{\mathbf{y}}}$ is:		
	(a) $-\frac{\hbar}{i} \left(y \frac{\partial}{\partial z} - z \right)$	$\left(\frac{\partial}{\partial y}\right)$	(b) $\frac{\hbar}{i} \left(z \frac{\partial}{\partial x} - z \right)$	$\left(x\frac{\partial}{\partial z}\right)$
	(c) $\frac{-i\hbar}{2m} \left(\frac{\partial}{\partial x} \right)$		(d) $\frac{\hbar}{i} \left(z \frac{\partial}{\partial x} - z \right)$	$y\frac{\partial}{\partial y}$
77.	The molecule with	the smallest rotation	partition function a	t any temperature
	among the following	g is		
	(a) $H_3C-C\equiv C-H$	(b) H−C≡C−H	(c) $H-C\equiv C-D$	(d) $D-C\equiv C-D$
78.	Both NaCl and KCl	crystallize with the F(CC structure. However	, the X-ray powder
	diffraction pattern	of NaCl corresponds to	o the FCC structure w	thereas, that of KCl
	corresponds to simp	ole cubic structure. Th	is is because	
	(a) K ⁺ and Cl ⁻ are is	oelectronic	(b) Na ⁺ and Cl	are isoelectronic
	(c) K ⁺ and Cl ⁻ are di	sordered in the crystal l	attice (d) KCl has an	ti-site defects
79.	Consider the cell:	$Zn Zn^{2+}_{(a=0.01)} Fe^{2+}$	$_{(a=0.001)}$, $Fe^{3+}_{(a=0.01)} I$	$Pt E_{Cell} = 1.71 V at$
	25 °C for the above	e cell. The equilibrium	constant for the rea	ction $Zn + 2Fe^{3+} \rightleftharpoons$
	$Zn^{2+} + 2Fe^{2+}$ at 2	5 °C would be close to,	113	
	(a) 10^{27}	(b) 10 ⁵⁴	-001930(c) 10 ⁸¹	(d) 10 ⁴⁰
80.	The molecule that h	as the smallest diffusion		is
	(a) glucose	(b) fructose	(c) ribose (d) sucrose
81.	Metallic gold cryst	allizes in FCC structur	e with unit cell dimer	nsion of 4.00 Å. The
	atomic radius of go	ld is	GE	
	(a) 0.866 Å	(b) 1.414 Å	(c) 1.732 Å	(d) 2.000 Å
82.	A first order gaseo	us reaction is 25 % co	omplete in 30 minutes	at 227 °C and in 10
	minutes at 237 °C.	The activation energy of	of the reaction is closes	st to
			(R	$\mathbf{x} = 2 \ \mathbf{cal} \ \mathbf{K}^{-1} \mathbf{mol}^{-1})$
	(a) 27 kcal mol^{-1}	(b) 110 kcal mol ⁻¹	(c) 55 kcal mol^{-1}	(d) $5.5 \text{ kcal mol}^{-1}$
83.	In the reaction bety	veen NO and H ₂ the fol	llowing data are obtain	ned

0

Experiment I: $P_{H_2} = constant$; $P_{NO}(mm \text{ of Hg})$

1.03 0.25

359

1.50

 $-dP_{NO}$

dt

300

152

Experiment II: $P_{NO} = constant$; P_{H2}(mm of Hg) 205 $-dP_{H_2}$ 1.60 1.10 0.79

The orders with respect to H₂ and NO are

- (a) 1 with respect to NO and 2 with respect to H₂
- (b) 2 with respect to NO and 1 with respect to H₂
- (c) 1 with respect to NO and 3 with respect to H₂
- (d) 2 with respect to NO and 2 with respect to H₂
- 84. The energy for a single electron excitation in cyclopropenium cation in Huckel theory is
 - (a) β

- (b) 2β (c) 3β

- (d) 4β
- 85. The atomic masses of fluorine and hydrogen are 19.0 and 1.0 amu, respectively $(1 \text{ amu} = 1.67 \times 10^{-27} \text{kg})$. The bond length of HF is 2.0 Å. The moment of inertia of HF is
 - (a) $3.2 \times 10^{-47} \text{ kg m}^2$

(b) $6.4 \times 10^{-47} \text{ kg m}^2$

(c) $9.6 \times 10^{-47} \text{ kg m}^2$

- (d) $4.8 \times 10^{-47} \text{ kg m}^2$
- 86. The masses recorded when a substance is weighed 4 times are 15.8, 15.4, 15.6 and 16.0 mg. The variance (square of the standard deviation) is closest to
 - (a) 0.02

- (b) 0.05
- (c) 0.10

- (d) 0.20
- 87. The transition that is allowed by x-polarized light in trans-butadiene is

(The character table for C_{2h} is given below)

			C_2			
•	$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	R_x, x^2, y^2, z^2, xy
	$\mathbf{B}_{\mathbf{g}}$	1	-1	1	-1	R _x , x ² , y ² , z ² , xy R _x ,R _y , xz, yz z x, y
	$\mathbf{A}_{\mathbf{u}}$	1	1	-1	-1	z
	$\mathbf{B}_{\mathbf{u}}$	1	-1	-1	1	x, y
	(1	$(a)^{1}A_{11}$	$\rightarrow 1$ B _o	г		$(c) {}^{1}B_{ij} \rightarrow {}^{1}B_{g} \qquad (d) {}^{3}$

- $(a)^{1}A_{11} \rightarrow {}^{1}A_{11}$

- (d) $^{3}B_{g} \rightarrow ^{1}A_{g}$
- The heat capacity of 10 mol of an ideal gas at a certain temperature is 300 JK⁻¹ at 88. constant pressure. The heat capacity of the same gas at the same temperature and at constant volume would be
 - (a) 383 IK^{-1}
- (b) 217 IK^{-1}
- (c) 134 JK^{-1}
- (d) $466 \, \text{IK}^{-1}$

Ø

89. The Maxwell's relationship derived from the equation, dG = VdP - SdT is:

(a)
$$\left(\frac{\partial V}{\partial T}\right)_{P} = \left(\frac{\partial S}{\partial P}\right)_{T}$$

(b)
$$\left(\frac{\partial P}{\partial V}\right)_T = \left(\frac{\partial T}{\partial S}\right)_P$$

(c)
$$\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial S}{\partial P}\right)_{T}$$

$$(d) \quad \left(\frac{\partial P}{\partial V}\right)_{T} = -\left(\frac{\partial T}{\partial S}\right)_{P}$$

90. The chemical potential (μ_i) of the ith component is defined as:

$$\mu_i = \left(\frac{\partial U}{\partial n_i}\right)_{T.P} \quad (b) \quad \mu_i = \left(\frac{\partial H}{\partial n_i}\right)_{T.P} \quad (c) \quad \mu_i = \left(\frac{\partial A}{\partial n_i}\right)_{T.P} \quad (d) \quad \mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T.P} \quad (d) \quad \mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T.P} \quad (d) \quad (d) \quad \mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T.P} \quad (d) \quad (d)$$

91. Work (w) involved in isothermal reversible expansion from V_i to V_f of 'n' moles of an ideal gas is

(a)
$$w = -nRT \ln \left(\frac{V_f}{V_i} \right)$$

(b)
$$w = nRT \ln \left(\frac{V_f}{V_i} \right)$$

(c)
$$w = -nRT\left(\frac{V_f}{V_i}\right)$$

$$(d) w = -nRT \log \left(\frac{V_f}{V_i}\right)$$

92. The limiting molar conductivities of NaCl, NaI and RbI are 12.7, 10.8 and 9.1 mS m² mol⁻¹, respectively. The limiting molar conductivity of RbCl would be

(a)
$$32.6 \text{ mS m}^2 \text{mol}^{-1}$$

(b)
$$7.2 \text{ mS m}^2 \text{mol}^{-1}$$

(c)
$$14.4 \text{ mS m}^2\text{mol}^{-1}$$

(d)
$$11.0 \text{ mS m}^2 \text{mol}^{-1}$$

93. The number of ways in which four molecules can be distributed in two different energy levels is

94. An element exists in two crystallographic modifications with FCC and BCC structures. The ratio of the densities of the FCC and BCC modifications in terms of the volumes of their unit cells (V_{FCC} and V_{BCC}) is

(a)
$$V_{BCC}: V_{FCC}$$

(b)
$$2V_{BCC}: V_{FCC}$$

(c)
$$V_{BCC}: 2V_{FCC}$$

(d)
$$V_{BCC}: \sqrt{2}V_{FCC}$$

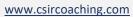
95. Given $\gamma(^1H)=2.7\times 10^8~T^{-1}s^{-1}$. The resonance frequency of a proton in magnetic field of 12.6 T is close to $(\pi=3.14)$

- (a) 60 MHz
- (b) 110 MHz
- (c) 540 MHz
- (d) 780 MHz

96. In Massbauer experiment, a source emitting at 14.4 KeV $(3.48 \times 10^{18} \text{ Hz})$ had to be moved towards absorber at 2.2 mm s⁻¹ for resonance. The shift in the frequency between the source and the absorber is

- (a) 15.0 MHz
- (b) 20.0 MHz
- (c) 25.5 MHz
- (d) 30.0 MHz

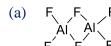
97. Among the following, the correct combination of complex and its colour is

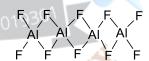

	Complex	Colour		Complex	Colour
(a)	$[Co(CN)_4]^{2-}$	Red	(b)	[CoCl ₄] ²⁻	Orange

	(c) $[Co(NCS)_4]^{2-}$ Blue (d) $[CoF_4]^{2-}$ Yellow
98.	In a specific reaction, hexachlorocyclotriphosphazene, (N ₃ P ₃ Cl ₆) was reacted with a
	metal fluoride to obtain mixed halo derivatives namely N ₃ P ₃ Cl ₅ F (I), N ₃ P ₃ Cl ₄ F ₂ (II),
	N ₃ P ₃ Cl ₃ F ₃ (III), N ₃ P ₃ Cl ₂ F ₄ (IV), N ₃ P ₃ ClF ₅ (V). Compositions among these which
	can give isomeric products are
	(a) I, II and III (b) II, III and IV (c) III, IV and V (d) V, I and II
99.	Xenon forms several fluorides and oxo fluorides which exhibit acidic behaviour. The
	correct sequence of descending Lewis acidity among the given species is represented
	by
	(a) $XeF_6 > XeOF_4 > XeF_4 > XeO_2F_2$
	(b) $XeOF_4 > XeO_2F_2 > XeF_4 > XeF_6$
	(c) XeF_4 > XeO_2F_2 > $XeOF_4$ > XeF_6
	(d) XeF_4 > XeF_6 > $XeOF_4$ > XeO_2F_2
100.	Number of isomeric derivatives possible for the neutral closo-carborane, $C_2B_{10}H_{12}$
	is
	(a) three (b) two (c) four (d) six
101.	For higher boranes 3c-2e 'BBB' bond may be a part of their structures. In B ₅ H ₉ ,
	the number of such electron deficient bond(s) present is/are
	(a) Four (b) two (c) zero (d) one
102.	In the atomic absorption spectroscopic estimation of $Fe(III)$ using O_2/H_2 flame, the
	absorbance decreases with the addition of
	(a) CO_3^{2-} (b) SO_4^{2-} (c) EDTA (d) Cl^{-}
103.	In a polarographic estimation, the limiting currents (μA) were 0. 15, 4. 65, 9. 15 and
	27.15 when concentration (mM) of Pb(II) were 0, 0.5, 1.0 and 3.0 respectively,
	An unknown solution of Pb(II) gives a limiting current of 13.65 μ A. Concentration
	of Pb(II) in the unknown is
	(a) 1.355 mM (b) 1.408 mM (c) 1.468 mM (d) 1.500 mM
104.	The gases SO ₂ and SO ₃ were reacted separately with ClF gas under ambient
	conditions. The major products expected from the two reactions respectively, are
	(a) SOF_2 and $ClOSO_2F$ (b) SOF_2 and SO_2F_2
105	(c) SO_2ClF and SO_2F_2 (d) SO_2ClF and $ClOSO_2F$
105.	The correct statement regarding terminal/bridging CO groups in solid $Co_4(CO)_{12}$
	and $Ir_4(CO)_{12}$ is

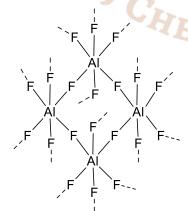
ajchemacademy@gmail.com

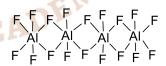
- (a) both have equal number of bridging CO groups
- (b) number of bridging CO groups in Co₄(CO)₁₂ is 4
- (c) the number of terminal CO groups in $Co_4(CO)_{12}$ is 8
- (d) the number of bridging CO groups in $Ir_4(CO)_{12}$ is zero
- 106. On reducing $Fe_3(CO)_{12}$ with an excess of sodium, a carbonylate ion is formed. The iron is isoelectronic with
 - (a) $[Mn(CO)_5]^-$
- (b) $[Ni(CO)_4]$
- (c) $[Mn(CO)_5]^+$ (d) $[V(CO)_6]^-$


- **107.** The correct statement for ozone is
 - (a) It absorbs radiations in wavelength region 290-320 nm
 - (b) It is mostly destroyed by NO radical in atmosphere
 - (c) It is non-toxic even at 100 ppm level
 - (d) Its concentration near poles is high due to its paramagnetic nature
- **108.** Among the following clusters, H is encapsulated in

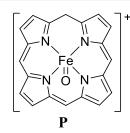

$$[(H)Co_6(CO)_{15}]$$

 $[(H)_2Os_6(CO)_{18}]$


 $[(H)_2 Os_5(CO)_{16}]$


- (a) P only
- (b) Q only
- (c) Q and R only
- (d) P and Q only
- The solid-state structure of aluminium fluoride is: 109.

(c)



110. Oxidised form of enzyme catalase (structure-P); prepared by the reaction of $[Fe(P)]^+(P = porphyrin)$ with H_2O_2 , has green colour because

(substitutents on ring are removed for clarity)

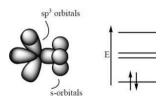
- (a) Oxidation state of iron changed from Fe^{III} to Fe^{IV}
- (b) Porphyrin ring is oxidized by one electron
- (c) π - π * transition appears in the visible region
- (d) Fe^{IV} is coordinated with anionic tyrosinate ligand in axial position
- The reactive position of nicotinamide adenine dinucleotide (NAD) in biological redox reactions is
 - (a) 2-position of the pyridine ring
- (b) 6-position of the pyridine ring
- (c) 4-position of the pyridine ring
- (d) 5-position of the pyridine ring
- The electrophile Ph_3C^+ reacts with $[(\eta^5-C_5H_5)Fe(CO)_2(CDMe_2)]^+$ to give a product 112. "P". The product "P" is formed because
 - (a) Fe is oxidised

(b) alkyl is substituted with Ph₃C

(c) Fe-Ph bond is formed

- (d) Alkyl is converted to alkene
- Substitution of L with other ligands will be easiest for the species:

- 114. Among the following, the correct statement is
 - (a) CH is isolobal to Co(CO)₃
- (b) CH₂ is isolobal to Ni(CO)₂
- (c) CH is isolobal to Fe(CO)₄
- (d) CH₂ is isolobal to Mn(CO)₄
- 115. MnCr₂O₄ is likely to have a normal spinel structure because
 - (a) Mn²⁺ will have a LFSE in the octahedral site whereas the Cr³⁺ will not
 - (b) Mn is +2 oxidation state and both the Cr are in +3 oxidation state
 - (c) Mn is +3 oxidation state and one Cr is in +2 and the other is in +3 state
 - (d) Cr³⁺ will have a LFSE in the octahedral site whereas the Mn²⁺ ion will not
- 116. The ground state forms of Sm³⁺ and Eu³⁺ respectively, are
 - (a) ${}^{7}F_{0}$ and ${}^{6}H_{\underline{5}}$
- (b) ${}^{6}H_{\frac{5}{2}}$ and ${}^{7}F_{0}$ (c) ${}^{2}F_{\frac{5}{2}}$ and ${}^{5}I_{4}$ (d) ${}^{7}F_{6}$ and ${}^{2}F_{\frac{7}{2}}$


ajchemacademy@gmail.com

117. The orbital interactions shown below represent

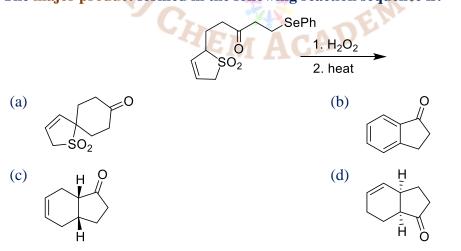
- (a) CH₃-Al interactions in Al₂(CH₃)₆
- (b) B-H interactions in B₂H₆
- (c) CH₃-Li interaction in Li₄(CH₃)₄
- (d) CH₃CH₂-Mg interactions in EtMgBr. (OEt₂)₂
- 118. Compounds $K_2Ba[Cu(NO_2)_6]$ (P) and $Cs_2Ba[Cu(NO_2)_6]$ (Q) exhibit tetragonal elongation and tetragonal compression, respectively. The unpaired electron in P and Q are found respectively, in orbitals,
 - (a) d_{z^2} and $d_{x^2-v^2}$

- (b) $d_{x^2-y^2}$ and d_{z^2} (c) d_{z^2} and d_{z^2} (d) $d_{x^2-y^2}$ and $d_{x^2-v^2}$
- 119. Reaction of Ph₂PCH₂CH₂PPh₂ with [RhCl(CO)₂]₂ in a 2:1 molar ratio gives a crystalline solid-P. The IR spectrum of complex-P shows v_{CO} at 1985 cm⁻¹. The ³¹P(¹H)-NMR spectrum of P consists of two doublets of doublets of equal intensities (103Rh is 100 % abundant and I = $\frac{1}{2}$). The structure of complex P is:
 - (a)

- Ph₂ CO CI Ph₂
- (c)

- Ph₂P ĖΡh₂
- The most appropriate structure for the complex $[Pt_2(NH_3)_2(NCS)_2(PPh_3)_2]$ is

- (d)
- 121. The major product formed in the following reaction sequence is:



122. The major product formed in the following reaction sequence is:

123. The major product formed in the following reaction sequence is:

124. The most suitable reagent combination of P-R, required in the following conversions are

Tiruchirappalli - 620 024

125. The major product-Q formed in the following reaction sequence, and overall yield of its formation are:

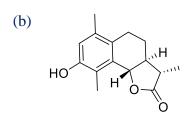
(S)-glutamic acid Aniline P LiAlH₄ Q
$$180 \, ^{\circ}\text{C}$$

$$60\%$$
(a) NHPh and 48%
(b) NHPh and 70%
H
(c) NHPh and 48%
(d) NHPh and 70%
H
NHPh and 70%

126. An organic compound $(C_6H_{10}O_2)$, which does not change the colour of ferric chloride solution, exhibited the following, structure of the compound is:

¹H-NMR :
$$7.3(1\text{H}, t, J = 8 \text{ Hz}), 7.0 (1\text{H}, d, J = 8 \text{ Hz}), 6.95(1\text{H}, s),$$
 6.9(1H, d, J = 8 Hz), 5.3 (1H, brs, D₂O exchangeable), 4.6 (2H, s), 3.9 (3H, s)

127. Methyl 4-oxopentanoate exhibited the following signals,

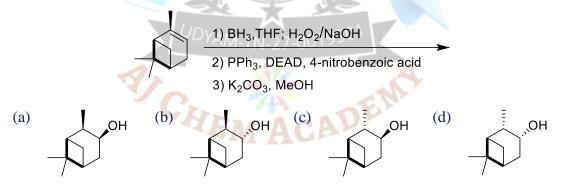

¹³C-NMR : δ 208, 172, 51, 37, 32 and 27 ppm

The signals due to the methoxy, C1, C4 and C5 carbons are

	OMe		C1		C4		C5	
(a)	32	;	208	;	172	,	51	- .]
(b)	51	;	208	;	172	;	32	
(c)	32	;	172	£	208		51	7
(d)	51	;	172	3;	208		32	

128. In the following reaction, the intermediate and the major product-P are:

129. The major product formed in the sulfuric acid mediated rearrangement of the sesquiterpene "P" is:


Tiruchirappalli - 620 024

$$\begin{array}{c} \text{(c)} \\ \text{HO} \\ \\ \text{HO} \\ \\ \text{O} \\ \\ \text{O$$

130. In the following transformation, the reagent "P" and the major product "Q", respectively, are:

131. The major product formed in the following reaction sequence is:

132. The major product formed in the following reaction sequence is:

Cis-but-2-ene-1,4-diol
$$CH_2Cl_2$$

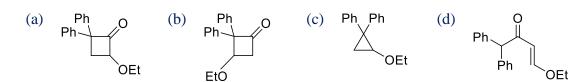
(a) CH_2Cl_2

(b) CH_2Cl_2

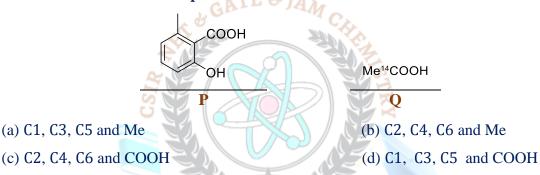
(c) CH_2Cl_2

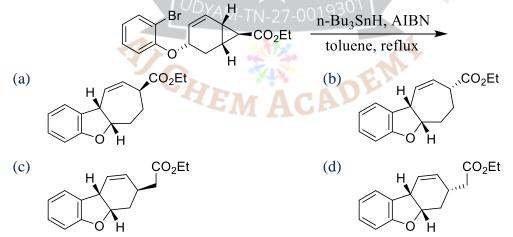
(d) CH_2CH_2

CHO


CHO

133. The major product formed in the following reaction sequence is:



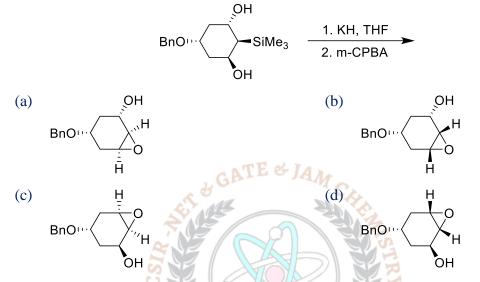


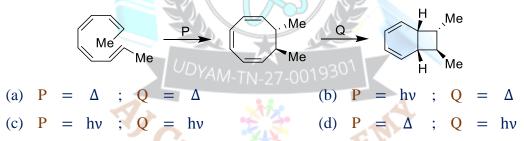
- 134. The peptide-P on reaction with 1-fluoro-2, 4-dinitrobenzene followed by exhaustive hydrolysis gave phenylalanine, alanine, serine and N-(2, 4-dinitrophenyl)glycine. On the other hand, peptide-P after two cycles of Edman degradation gave Phe-Ser as the product. The structure of the peptide-P is
 - (a) Phe-Ser-Ala-Gly (b) Phe-Ser-Gly-Ala (c) Gly-Ala-Phe-Ser (d) Ala-Gly-Phe-Ser
- 135. The compound (Q) (labelled) is precursor for biosynthesis of the natural product-P.

 The labelled carbons in the product P are

136. The major product formed in the following reaction sequence is:

137. The major product formed in the following reaction sequence is:


Tiruchirappalli - 620 024


www.csircoaching.com

138. The major product formed in the following reaction sequence is:

139. The conditions P-Q, required for the following pericyclic reactions are:

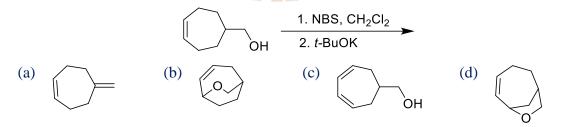
140. The number of π electrons participating and the pericyclic mode in the following reactions are

(a) 4 and conrotatory

(b) 4 and disrotatory

(c) 6 and conrotatory

- (d) 6 and disrotatory
- 141. Stereoselective reduction of the dione-P with a chiral reducing agent provides the corresponding diol-Q in 100 % diastereoselectivity and 90 % ee favouring R, R configuration. The composition of the product is:



Tiruchirappalli - 620 024

142. The major product formed in the following reaction sequence is:

143. The major product formed in the following reaction sequence is

144. The major product formed in the following reaction sequence is:

145. The major product formed in the following photochemical reaction is:

$$(a) \qquad \qquad (b) \qquad \qquad (b) \qquad \qquad (c) \qquad \qquad (d) \qquad \qquad Ph$$

Answer Key

PART - B

Q.No	Ans	
21.	b	

Q.No	Ans	
36.	b	

Q.No	Ans
51.	c

Q.No	Ans	
61.	c	

22.	d
23.	d
24.	c
25.	c
26.	a
27.	С
28.	b
29.	c
30.	a
31.	a
32.	c
33.	b
34.	c
35.	b

b
b
d
c
d
d
b
b
b
c
c
c
a
c

52.	d
53.	a
54.	a
55.	b
56.	a
57.	a
58.	b
59.	b
60.	b

62.	b
63.	d
64.	d
65.	c
66.	b
67.	b
68.	b
69.	d
70.	b

PART - C

Q.No	Ans
71.	d
72.	c
73.	a
74.	d
75.	b
76.	b
77.	b
78.	a
79.	b
80.	d
81.	b

Y	Q.No	Ans
	91.	a
	92.	d
	93.	c
	94.	b
	95.	c
	96.	c
	97.	c
	98.	b
	99.	a
	100.	a
	101.	d

Q.No	Ans
111.	c
112.	d
113.	c
114.	a
115.	d
116.	b
117.	c
118.	b
119.	a
120.	c
121.	d

Q.No	Ans
131.	a
132.	a
133.	b
134.	c
135.	c
136.	d
137.	a
138.	b
139.	b
140.	d
141.	d

82.	c
83.	b
84.	c
85.	b
86.	b
87.	b
88.	b
89.	c
90.	d

102.	b
103.	d
104.	d
105.	d
106.	b
107.	a
108.	a
109.	c
110	a

	122.	b
	123.	d
	124.	a
	125.	a
	126.	b
	127.	d
	128.	d
0	129.	b
E & JA	130.	d
CA		

142.	b
143.	a
144.	a
145.	b

- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.
- © இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜேகெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்புசெய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையி<mark>ன்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எ</mark>டுக்கப்பட்டாலும், சில தவறுகள் கவனக் குறைவாக ஊடுரு<mark>வியிருக்கலாம். என</mark>வே அவற்றிற்கு நாங்கள் எந்த சட்டப்பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

