AJ Chem Academy

Reg.No: UDYAM-TN-27-0019301

CSIR-UGC-NET (Chemical Science) – DEC - 2015

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching
- ✓ PG | Polytechnic TRB Chemistry Coaching

www.csircoaching.com

Features

*	000	· ·	т •	α	
\sim	-3111) ++	1370	('I	asses

➤ 600 ++ Concept Wise Tests

> 50 ++ Chapter Wise Tests

> 50 ++ Model Tests

➤ 2000 ++ Problem Discussions

> Recorded Videos

➤ A Well-Defined Curriculum

➤ A Strong Subject Foundation

➤ A Refined Learning Methodology

> Updated Study materials

> Freshers Can easily understand

Question banks

Q.21 - Q.70 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -0.5). You are required to Answer Maximum 35 Questions.

- The biological functions of cytochrome P₄₅₀ and myoglobin are, respectively 21.
 - (a) oxidation of alkene and O_2 storage
- (b) O_2 transport and O_2 storage
- (c) O_2 storage and electron carrier
- (d) electron carrier and O₂ transport

- 22. **Deoxy-hemocyanin is**
 - (a) heme protein and paramagnetic
- (b) colorless and diamagnetic
- (c) 0_2 transporter and paramagnetic
- (d) blue colored and diamagnetic
- The oxidizing power of $[CrO_4]^{2-}$, $[MnO_4]^{2-}$ and $[FeO_4]^{2-}$ follows the order 23.

(a)
$$[CrO_4]^{2-}$$
 < $[MnO_4]^{2-}$ < $[FeO_4]^{2-}$

(b)
$$[FeO_4]^{2-} < [MnO_4]^{2-} < [CrO_4]^{2-}$$

(c)
$$[MnO_4]^{2-}$$
 < $[FeO_4]^{2-}$ < $[CrO_4]^{2-}$

- (d) $[CrO_4]^{2-}$ < $[FeO_4]^{2-}$ < $[MnO_4]^{2-}$
- Using crystal field theory, identify from the following complex ions that shows same 24. μ_{eff} (spin only) values

$$\frac{P}{[CoF_6]^{3-}} \qquad \frac{Q}{[Fe(H_2O)_6]^{2+}}$$

- (a) P and Q
- (b) Q and R
- (d) P, Q and R
- The W-W bond order in $[W(\eta^5-C_5H_5)(\mu-Cl)(CO)_2]_2$ is 25.
- (b) two (c) one
- (d) zero
- **26.** The correct statement for Mn–O bond lengths in $[Mn(H_2O)_6]^{2+}$ is
 - (a) All bonds are equal
 - (b) Four bonds are longer than two others
 - (c) Two bonds are longer than four others
 - (d) They are shorter than the Mn–O bond in $[MnO_4]^-$
- For the reaction of $[Fe(\eta^5-C_5H_5)(CH_3)(CO)_2]$ with PMe₃, the main intermediate is 27.
 - (a) $[Fe(\eta^5-C_5H_5)(CH_3)(CO)_2(PMe_3)]$
 - (b) $[Fe(\eta^5-C_5H_5)(COCH_3)(CO)]$
 - (c) $[Fe(\eta^3-C_5H_5)(CH_3)(CO)_2]$
 - (d) $[Fe(\eta^3-C_5H_5)(COCH_3)(CO)(PMe_3)]$
- 28. Identify the complex ions in sequential order when ferroin is used as an indicator in

Tiruchirappalli - 620 024

Ø

the titration of iron(II) with potassium dichromate,

(phen = 1, 10-phenathroline)

- (a) $[Fe(phen)_3]^{2+}$ and $[Fe(phen)_3]^{3+}$
- (b) $[Fe(phen)_3]^{3+}$ and $[Fe(phen)_3]^{2+}$
- (c) $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_6]^{3-}$
- (d) $[Fe(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$
- 29. The structures of XeF₂ and XeO₂F₂ respectively are
 - (a) bent, tetrahedral

(b) linear, square planar

(c) linear, see-saw

- (d) bent, see-saw
- 30. Spin motion of which of the following gives magnetic moment

P	Q	R
electron	proton	neutron

Correct answer is

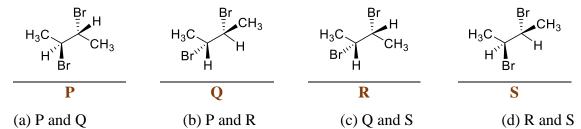
- (a) P and Q
- (b) Q and R
- (c) P and R
- (d) P, Q and R

- 31. Correct statement for coulometry is
 - (a) it is based on Faraday's law of electrolysis
 - (b) it is a type of voltammetry
 - (c) it is based on Ohm's law
 - (d) it uses ion selective electrode
- 32. The order of increasing Bronsted acidity for boron hydrides is
 - (a) $B_5H_9 < B_6H_{10} < B_{10}H_{14}$
 - (b) $B_{10}H_{14} < B_5H_9 < B_6H_{10}$
 - (c) $B_6H_{10} < B_{10}H_{14} < B_5H_9$
 - (d) $B_{10}H_{14} < B_6H_{10} < B_5H_9$
- 33. Among the following, species expected to show fluxional behaviour are

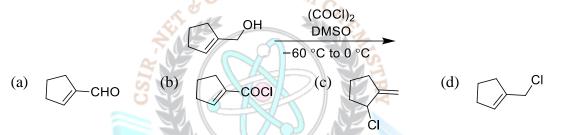
- (a) Q and R
- (b) Q and S
- (c) R and S
- (d) P and S
- 34. The ring size and the number of linked tetrahedral present in $[Si_6O_{18}]^{12-}$ are, respectively
 - (a) 6 and 6

Tiruchirappalli - 620 024

- (b) 12 and 6
- (c) 12 and 12
- (d) 6 and 12
- 35. The molecule C_3O_2 has a linear structure. This compound has



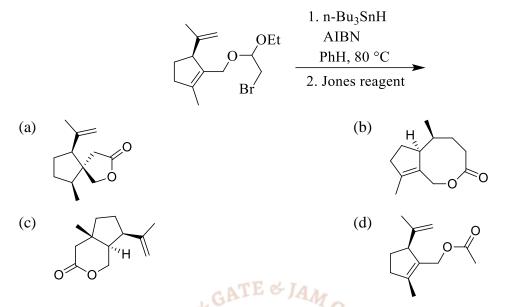
(a) 4σ and 4π bonds


(b) 3σ and 2π bonds

(c) 2σ and 3π bonds

- (d) 3σ and 4π bonds
- 36. The metallic radii are abnormally high for which of the following pairs?
 - (a) Eu, Yb
- (b) Sm, Tm
- (c) Gd, Lu
- (d) Nd, Ho
- 37. Identify two enantiomers among the following compounds

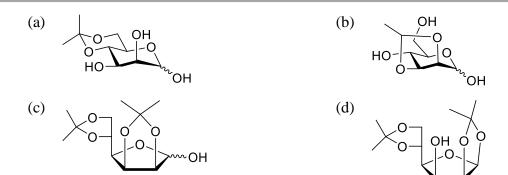
38. The major product formed in the following reaction is



39. The major product formed in the following reaction is

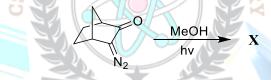
40. The major product formed in the following reaction is

41. The major product formed in the following reaction is

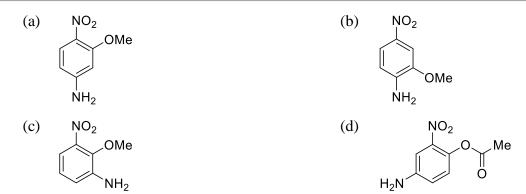

42. The major product P and Q in the following reactions are

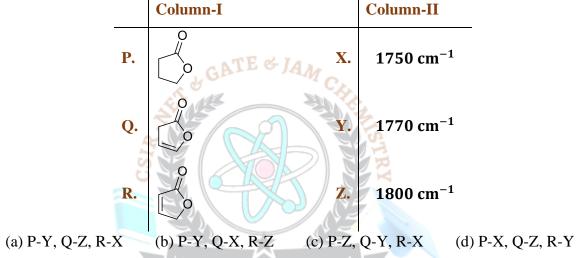
43. D-Mannose upon refluxing in acetone with $CuSO_4$ and H_2SO_4 gives

D - mannose



44. The major product formed by photochemical reaction of (2E, 4Z, 6E)-decatriene is


45. The correct statement about the following reaction is that


- (a) $X = \bigcap_{CO_2Me} \bigcap$
- (b) $X = \bigcap_{CO_2Me}$; the reaction proceeds through nitrene intermediate
- (c) $X = \bigcup_{i=1}^{CO_2Me} CO_2Me_i$; the reaction proceeds through Norrish type-II path
- (d) $X = \bigcap_{CO_2Me}$; the reaction proceeds through Norrish type-I path
- 46. The structure of the compounds that matches the ${}^{1}H$ -NMR data given below is ${}^{1}H$ NMR : δ 7.75 (dd, J = 8.8, 2.4 Hz, 1H), 7.58 (d, J = 2.4 Hz, 1H), 6.70 (d, J = 8.8 Hz, 1H), 6.50 (broad s, 2H), 3.80 (s, 3H)

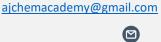
Tiruchirappalli - 620 024

47. Correctly matched structure and carbonyl stretching frequency set is

48. The number of chemical shift non-equivalent protons expected in $^1\text{H-NMR}$ spectrum of α -pinene is

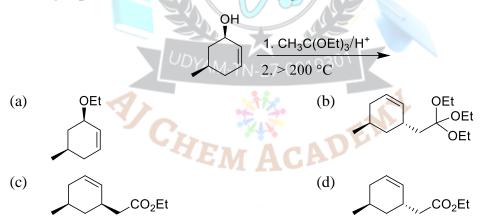
(a) 7 (b) 8 (c) 9 (d) 10

49. In the mass spectrum of 1, 2-dichloroethane, approximate ratio of peaks at m/z values 98, 100, 102 will be

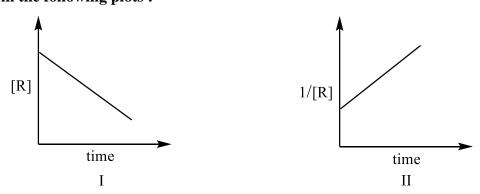

(a) 3:1:1 (b) 9:6:1 (c) 1:1:2 (d) 1:2:1

50. The major product formed in the following reaction is

$$CF_3$$
 CO_2Me
 Ph_2O
 $reflux$



(a)
$$CF_3$$
 (b) CF_3 N_1 N_2 N_3 N_4 N_4


51. The major product formed in the following reaction is

(a)
$$(b)$$
 (c) (d) (d)

52. The major product formed in the following reaction is

53. The concentration of a reactant R varies with time for two different reactions as shown in the following plots :

The orders of these two reactions I and II, respectively are

Tiruchirappalli - 620 024

- (a) zero and one
- (b) one and zero
- (c) zero and two
- (d) two and zero
- 54. For a simple cubic crystal lattice, the angle between the [2 0 1] plane and the xy plane is
 - (a) less than 30° (b) between 30° and 45° (c) between 45° and 60° (d) greater than 60°
- For the following reaction, $\frac{d[B]}{dt}$ is given by 55.

$$A \xrightarrow{k_1} 2B$$

$$B \xrightarrow{k_2} C$$

- (a) $k_1[A] k_{-1}[B]^2 2k_2[B]$ (b) $2k_1[A] 2k_{-1}[B]^2 k_2[B]$ (c) $\frac{1}{2}k_1[A] \frac{1}{2}k_{-1}[B]^2 k_2[B]$ (d) $2k_1[A] 2k_{-1}[B]^{1/2} k_2[B]$
- If the reduced mass of a diatomic molecule is doubled without changing its force **56.** constant, the vibrational frequency of the molecule will be
 - (a) $\sqrt{2}$ times the original frequency

(b) $\frac{1}{\sqrt{2}}$ times the original frequency

(c) twice the original frequency

- (d) unchanged
- The standard deviation of speed (σ_c) for Maxwell's distribution satisfies the relation *5*7.
 - (a) $\sigma_c \propto T$
- (b) $\sigma_{\rm c} \propto \sqrt{\rm T}$
- (c) $\sigma_c \propto 1/T$
- (d) $\sigma_c \propto 1/\sqrt{T}$
- The value of $\Delta U \Delta H$ for the reaction $Fe_2O_{3(s)} + 3C_{(s)} \rightarrow 2Fe_{(s)} + 3CO_{(g)}$ is **58.**
 - (a) 3RT

- (d) RT
- If the pressure $p_{(system)}$ is greater than the $p_{(surroundings)}$, then **59.**
 - (a) work is done on the system by the surroundings
 - (b) work is down on the surroundings by the system
 - (c) work done on the system by the surroundings is equal to the work done on the surroundings by the system
 - (d) internal energy of the system increases
- Two different non-zero operators \widehat{A} and \widehat{B} ($\widehat{A} \neq \widehat{B}$) satisfy the relation (\widehat{A} + **60.** $(\widehat{\mathbf{B}})(\widehat{\mathbf{A}} - \widehat{\mathbf{B}}) = \widehat{\mathbf{A}}^2 - \widehat{\mathbf{B}}^2$, when
 - (a) $\widehat{A}\widehat{B} = \widehat{A}^2$ and $\widehat{B}\widehat{A} = \widehat{B}^2$

(b) $\widehat{A}\widehat{B} + \widehat{B}\widehat{A} = 0$

(c) \widehat{A} and \widehat{B} are arbitrary

- (d) $\widehat{A}\widehat{B} \widehat{B}\widehat{A} = 0$
- The degeneracy of an excited state of a particle in 3-dimensional cubic box with **61.** energy 3 times its ground state energy is

www.csircoaching.com

ajchemacademy@gmail.com

Ø

	(a) 3 (b) 2 (c) 1 (d) 4
62.	ΔH of a reaction is equal to slope of the plot of
	(a) ΔG versus (1/T) (b) ΔG versus T (c) ($\Delta G/T$) versus T (d) ($\Delta G/T$) versus (1/T)
63.	The correct form for a simple Langmuir isotherm is
	(a) $\theta = Kp$ (b) $\theta = (Kp)^{1/2}$ (c) $\theta = Kp/(1 + Kp)$ (d) $\theta = (1 + Kp)/Kp$
64.	In Kohlrausch law, $\Lambda_{\rm m}=\Lambda_{\rm m}^{\circ}-{\bf k}\sqrt{{\bf c}},\ \Lambda_{\rm m}^{\circ}$ and k
	(a) depend only on stoichiometry
	(b) depend only on specific identify of the electrolyte
	(c) are independent of specific identify of the electrolyte
	(d) are mainly dependent on specific identity of the electrolyte and stoichiometry respectively
65.	The correct expression for the product (\overline{M}_n) . (\overline{M}_w) is
00.	$[\overline{M}_n]$ and \overline{M}_w are the number-average and weight average molar masses
	(a) $N^{-1}\sum_{i}N_{i}M_{i}$ (b) $N^{-1}\sum_{i}N_{i}M_{i}^{2}$ (c) $N/\sum_{i}N_{i}M_{i}$ (d) $N/\sum_{i}N_{i}M_{i}$
66.	The concentration of a MgSO ₄ solution having the same ionic strength as that of
00.	0.1 M Na ₂ SO ₄ solution is
	(a) 0.05 M (b) 0.067 M (c) 0.075 M (d) 0.133 M
67.	sp hybrid orbitals are of the form $C_12s + C_22p_z$ (2s and $2p_z$ are normalise
07.	individually). The coefficients of the normalized form of the above sp hybri
	orbitals are
	(a) $C_1 = \frac{1}{\sqrt{2}}$, $C_2 = \pm \frac{1}{\sqrt{2}}$ (b) $C_1 = \frac{1}{2}$, $C_2 = \pm \frac{1}{2}$
	(c) $C_1 = \frac{1}{\sqrt{2}}$, $C_2 = \pm \frac{1}{2}$ (d) $C_1 = \frac{1}{2}$, $C_2 = \pm \frac{1}{\sqrt{2}}$
68.	The correct statement among the following is
	(a) N_2 has higher bond order than N_2^+ and hence has larger bond length compared to N_2^+
	(b) N_2^+ has higher bond order than N_2^- and hence has larger bond length compared to N_2^-
	(c) N_2 has higher bond order than N_2^+ and hence has higher dissociation energy compare to N_2^+
	(d) N_2 has lower bond order than N_2^+ and hence has lower dissociation energy compare
	to N_2^+ energy
69.	The formation constant for the complexation of M^+ ($M = Li$, Na , K and Cs) wit
	cryptand, C222 follows the order

(a) $Li^+ < Cs^+ < Na^+ < K^+$ (b) $Li^+ < Na^+ < K^+ < Cs^+$

(c) $K^+ < Cs^+ < Li^+ < Na^+$ (d) $Cs^+ < K^+ < Li^+ < Na^+$

70. The correct match for compounds in column-I with the description in column-II is

	Column-I	Column-II
P.	CO ₂ H X.	Oil of wintergreen
Q.	OH Y.	Aspirin
R.	CO_2H CCO_2H $CCOCH_3$	Ibuprofen
(a) P	-Y, Q-Z, R-X (b) P-Z, Q-X, R-Y	(c) P-Z, Q-Y, R-X (d) P-X, Q-Z, R-Y

Q.71 - Q.145 Multiple Choice Question (MCQ), carry FOUR marks each (for each wrong answer:-1). You are required to Answer Maximum 25 Questions.

The resonance Raman stretching frequency $(v_{0-0}, in\ cm^{-1})$ of O_2 is 1580. The **71.** v_{0-0} for O_2 in bound oxy-hemoglobin is close to

(a) 1600

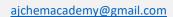
(b) 1900

(c) 800

(d) 1100


Match the metalloprotein in Column-I with its biological function and metal centre **72.** in Column-II. wit:

	Column-I	بَا	Column-II
[P]	hemoglobin	i.	electron carrier and iron
[Q]	cytochrome b	ii.	electron carrier and copper
[R]	vitamin B ₁₂	ii.	O ₂ transport and copper
[S]	hemocyain i	V.	Group transfer reactions and cobalt
	,	v.	O ₂ storage and cobalt
	V	vi.	O ₂ transport and iron


The correct match is

73. Pick the correct statements about Atomic Absorption Spectrometry (AAS) from the following

[P] Hg lamp is not a suitable source for AAS

	[Q] Graphite furnace is the best atomizer for AAS								
	[R] Non-metals cannot be determined with AAS								
	[S] AAS is better than ICP-AES for simultaneous determination of metal ions								
	Correct answer is								
	(a) P, Q and R	(b) Q, R and S	(c) P, R and S	(d) P, Q and S					
74.	Identify radioactive capture from the following nuclear reactions								
	(a) ${}^{9}\text{Be} (\gamma, n) {}^{8}\text{Be}$		(b) 23 Na (n, γ) 24 Na	a					
	(c) ⁶³ Cu (p, p, 3n	9α) ²⁴ Na	(d) 107 Ag (n, n) 107	Ag					
75.	The calibration of	curve in spectrofluorim	netric analysis becomes no	on-linear when					
	(a) molecular wei	ght of analyte is high	(b) intensity of light so	urce is high					
	(c) concentration	of analyte is high	(d) molar absorptivity of	of analyte is high					
76.	[MnO ₄] ⁻ is deep	purple in color wherea	as [ReO ₄] is colorless. Tl	nis is due to					
	greater energy re	equired for							
	(a) d-d transitions	in the Re compound co	mpared to the Mn compour	nd					
	(b) d-d transitions in the Mn compound compared to the Re compound								
	(c) charge transfer from O to Re compared to O to Mn								
	(d) charge transfer from O to Mn compared to O to Re								
77.	$[(\eta^3\text{-}C_3H_5)Mn(CO)_4]$ shows fluxional behaviour. The $^1H\text{-}NMR$ spectrum of this								
	compound when it is in the non-fluxional state shows								
	 (a) one signal (b) two signals in the intensity ratio of 4:1 (c) three signals in the intensity ratio of 2:2:1 								
	(b) two signals in	the intensity ratio of 4:	LADE						
	(c) three signals in	n the intensity ratio of 2	: 2 : 1						
	(d) five signals of	equal intensity							
78.	The number of	lone pair(s) of electron	ns on the central atom in	$[BrF_4]^-, XeF_6$ and					
	$[\mathbf{SbCl}_6]^{3-}$ are, re	spectively							
	(a) 2, 0 and 1	(b) 1, 0 and 0	(c) 2, 1 and 1	(d) 2, 1 and 0					
79.	Consider the foll	owing reaction:							
	N_3F	$P_3Cl_6 + 6HNMe_2 \rightarrow N_5$	$_3$ P $_3$ Cl $_3$ (NMe $_2$) $_3 + 3$ Me $_2$ N	IH. HCl					
			[X]						
	The number of p	ossible isomers for [X]	is						
	(a) 4	(b) 3	(c) 2	(d) 5					
80.	Using Wade's ru	les predict the structur	re type of [C ₂ B ₅ H ₇]						
	(a) nido	(b) closo	(c) arachno	(d) hypho					

81. Among the following complexes, the chiral one(s) is/are

 $\begin{array}{c|cccc} P & Q & R \\ \hline [Co(ox)_3]^{3-} & trans-[COCl_2(en)_2]^+ & \hline [Cr(EDTA)]^- \\ \hline \text{(a) P and Q} & \text{(b) Q and R} & \text{(c) R only} & \text{(d) P and R} \\ \end{array}$

- 82. Mössbauer spectrum of a metal complex gives information about
 - [P] oxidation state and spin state of metal
 - [O] types of ligands coordinated to metal
 - [R] nuclear spin state of metal
 - [S] geometry of metal

Correct answer is

- (a) P and R (b) Q and R (c) P, Q and S (d) Q and S
- 83. For uranocene, the correct statement(s) is/are
 - [P] oxidation state of uranium is '+4'
 - [Q] it has cyclooctatetraenide ligands
 - [R] it is a bent sandwich compound
 - [S] it has '-2' charge

Correct answer is

- (a) P and Q (b) Q and R (c) P and S (d) Q only
- 84. The final products of the reaction of carbonyl metalates $[V(CO)_6]^-$ and $[Co(CO)_4]^-$ with H_3PO_4 , respectively, are
 - (a) $V(CO)_6$ and $HCo(CO)_4$
- (b) HV(CO)₆ and Co₂(CO)₈
- (c) $[H_2V(CO)_6]^+$ and $HCo(CO)_4$

- (d) $V(CO)_6$ and $Co_2(CO)_8$
- 85. The correct statement about the substitution reaction of $[Co(CN)_5Cl]^{3-}$ with OH⁻ to give $[Co(CN)_5(OH)]^{3-}$ is,
 - (a) it obeys first order kinetics
 - (b) its rate is proportional to the concentration of both the reactants
 - (c) it follows the $S_N 1$ CB mechanism
 - (d) its rate is dependent only on the concentration of [OH]⁻
- 86. Aqueous Cr^{2+} effects one electron reduction of $[Co(NH_3)_5Cl]^{2+}$ giving compound Y. Compound Y undergoes rapid hydrolysis. Y is,
 - (a) $[Co(NH_3)_5]^{2+}$ (b) $[Co(NH_3)_5(OH)]^+$ (c) $[Co(NH_3)_4(OH)_2]$ (d) $[Cr(H_2O)_5Cl]^{2+}$
- 87. The reaction of BCl₃ with NH₄Cl gives product which upon reduction by NaBH₄ gives product Y. Product Y upon reacting with HCl affords compound Z, which is

ajchemacademy@gmail.com

(a) $Cl_3B_3N_3H_9$

(b) [ClBNH]₃

(c) $[HBNH]_3$

(d) $(ClH)_3 B_3 N_3 (ClH)_3$

88. The number of valence electrons provided by $[Ru(CO)_3]$ fragment towards cluster bonding is

(a) 1

(b) 14

(c) 6

(d) 2

- 89. Choose the correct statements about Tanabe-Sugano diagrams
 - [P] E/B is plotted against $\frac{\Delta_0}{B}$
 - [Q] The zero energy is taken as that of the lowest term
 - [R] Terms of the same symmetry cross each other
 - [S] Two terms of the same symmetry upon increase of ligand field strength bend apart from each other _

Correct answer is

(a) P and Q

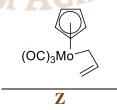
(b) P and R

(c) P, Q and S

(d) All are correct

- 90. Which of the following statements are TRUE for the lanthanides?
 - [P] The observed magnetic moment of Eu³⁺ at room temperature is higher than that calculated from spin-orbit coupling
 - [Q] Lanthanide oxides are predominantly acidic in nature
 - [R] The stability of Sm(II) is due to its half-filled sub-shell
 - [S] Lanthanide (III) ions can be separated by ion exchange chromatography

Correct answer is


(a) P and S

(b) P and Q

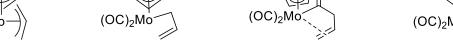
(c) P and R

(d) Q and R

91. The intermediate and the final major product of photolysis of Z.

From the following are:

(OC)₃Mo


Q

R

S

(a) P and S

(b) Q and S

(c) Q and R

(d) P and R

92. Reaction of $[Mn_2(CO)_{10}]$ with I_2 results in X without loss of CO. Compound X, on heating of 120 °C loses a CO ligand to give Y, which does not have a Mn–Mn bond.

0

Compound Y reacts with pyridine to give 2 equivalents of Z. Compounds X, Y and Z from the following respectively, are

$$\begin{array}{c|c} CO & CO & CO \\ OC - Mn - Mn - CO & OC - Mn - CO \\ OC & CO & OC \end{array}$$

- (a) II, V and IV
- (b) II, III and IV (c) V, III and IV
- (d) II, V and III
- **93.** The approximate positions of v_{CO} bands(cm⁻¹) in the solid-state infrared spectrum and the Fe-Fe bond order in $[Fe(\eta^5-C_5H_5)(\mu-CO)(CO)]_2$ (non-centrosymmetric) respectively, are
 - (a) (2020, 1980, 1800) and one

(b) (2020, 1980, 1800) and two

(c) (2020, 1980) and one

- (d) (2143) and one
- 94. Protonated form of ZSM-5 catalyses the reaction of ethene with benzene to produce ethylbenzene. The correct statement for this catalytic process is
 - (a) alkyl carbocation is formed

- (b) carbanion is formed
- (c) benzene is converted to $(C_6H_5)^+$ group (d) vinyl radical is formed
- **95.** Three electronic transitions at 14900, 22700 and 34400 cm⁻¹ are observed in the absorption spectrum of $[CrF_6]^{3-}$. The Δ_0 value (in cm⁻¹) and the corresponding transition are
 - (a) 7800 and ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$

(b) 14900 and ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$

(c) 14900 and ${}^{4}T_{2g} \rightarrow {}^{4}T_{1g}(F)$

- (d) 7800 and ${}^{4}T_{2g} \rightarrow {}^{4}T_{1g}(F)$
- The major product formed in the following reaction is 96.

Tiruchirappalli - 620 024

ajchemacademy@gmail.com

97. The following transformation involves sequential

- (a) Claisen rearrangement Cope rearrangement ene reaction
- (b) Cope rearrangement Claisen rearrangement ene reaction
- (c) Cope rearrangement ene reaction Claisen rearrangement
- (d) ene reaction Claisen rearrangement Cope rearrangement

98. The major product formed in the following reaction sequence is

99. The major products P and Q in the following reaction sequence are

Grubbs' Catalyst
$$\frac{Grubb's \text{ catalyst}}{CICH_2\text{-}CH_2CI} \quad P \quad \stackrel{LiAlH_4}{\longrightarrow} Q$$

$$\frac{Grubbs' \text{ Catalyst}}{CI \quad PCy_3} \quad P \quad \stackrel{LiAlH_4}{\longrightarrow} Q$$

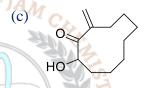
P

Q

P

Q

(a)
$$O \setminus H$$
 ; H


(b)
$$O \longrightarrow H$$
 ; H

$$(d) \quad O \qquad \qquad H \qquad ; \qquad M \qquad \qquad H$$

(d)

100. The major product formed in the following reaction is

(b)

101. The major products P and Q in the following reaction sequences are

D-erythrose; D-glucose + D-mannose

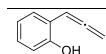
(c) D-tartaric acid ; D-glucose

(a) D-threose

; D-glucose

(d) D-threose

(b)


; D-glucose + D-mannose

Q

102. The major products P and Q in the following reaction sequence are

Br
$$\xrightarrow{\text{1. PPh}_3}$$
 P $\xrightarrow{\text{OH}}$ Q Q

(a)
$$\operatorname{\mathsf{Br}}^{\ominus}\operatorname{\mathsf{Ph}_3\mathsf{P}}^{\oplus}$$

103. The major products P and Q in the following reaction sequence are

104. The major products P and Q in the following reactions sequence are

$$\begin{array}{c|c}
 & B_2H_6 \text{ (1 equiv.)} \\
\hline
 & 25 \text{ °C}
\end{array}$$

$$\begin{array}{c|c}
 & P \\
\hline
 & 2. & CO_2Me \\
\hline
 & Pd(dppf) \text{ Cl}_2 \\
 & AsPh_3, \text{ Cs}_2\text{CO}_3 \\
 & DMF, \text{ H}_2\text{O}
\end{array}$$

$$\begin{array}{c|c}
 & P \\
\hline
 & Q \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & \\
\hline
 & & &$$

Tiruchirappalli - 620 024

$$(b) \qquad \begin{matrix} H \\ B \\ \end{matrix} \qquad ; \qquad \begin{matrix} CO_2Me \\ \end{matrix}$$

$$(d) \qquad \begin{matrix} H \\ B \\ \end{matrix} \qquad ; \qquad \begin{matrix} CO_2Me \end{matrix}$$

105 The major products P and Q in the following reaction sequence are

MeO

1. t-BuOK (2.2 equi.)

MeI (2.5 equiv.)

THF

2. NaBH₄, MeOH

3.AcCl, pyridine

4. CF₃CO₂H, Et₃SiH

CH₂Cl₂

$$CH_2$$
Cl₂

1. t-BuOH

Li, t-BuOH

liq. NH₃, THF

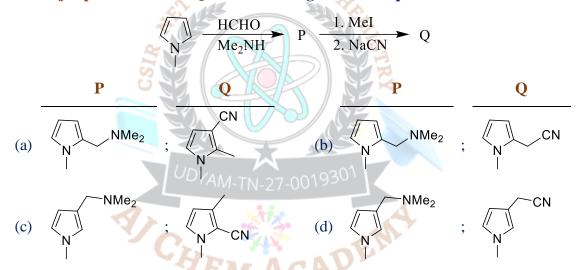
 -40 °C

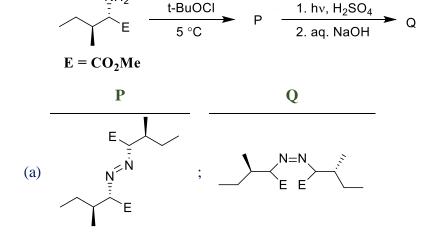
$$(c) \quad \overset{\mathsf{OAc}}{\longleftarrow} \quad ; \quad \overset{\mathsf{OAc}}{\longleftarrow} \quad$$

$$(d) \hspace{1cm} \text{MeO} \hspace{1cm} ; \hspace{1cm} \text{MeO} \hspace{1cm}$$

106. The major product formed in the following reaction is

Tiruchirappalli - 620 024



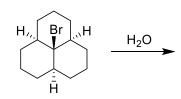

107. The major product formed in the following reaction is

$$(a) \qquad (b) \qquad H \qquad (c) \qquad H \qquad (d) \qquad H \qquad CN$$

108. The major products P and Q in the following reaction sequence are

109. The major products P and Q in the following reaction sequence are

Tiruchirappalli - 620 024


www.csircoaching.com

110. The correct reagent combination to effect the following transformation is

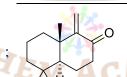
$$O = O$$
 $O = O$
 $O =$

- (a) (1) NaBH₄, BF₃. OEt₂
 - (2) MeMgBr (2.5 equiv.), THF then H_3O^+
- (b) **(1)** BH₃.THF
 - (2) MeLi (2.5 equiv.), THF then H_3O^+
- (c) **(1)** BH₃.THF
 - (2) (i) aq. NaOH then H_3O^+ , (ii) MeLi (2.5 equiv,), THF then H_3O^+
- (d) (1) (i) Me_3Al , MeNHOMe, (ii) MeMgBr, THF then H_3O^+
 - (2) LiAlH₄, THF

111. The mechanism and the product formed in the following reaction, respectively, are

(a)
$$S_N 2$$
 and $H_{//} QH_{//} H_{//} QH_{//} H_{//} H_{//} QH_{//} H_{//} H_$

(b)
$$S_N 1$$
 and $H_{//} OH_{//} H$

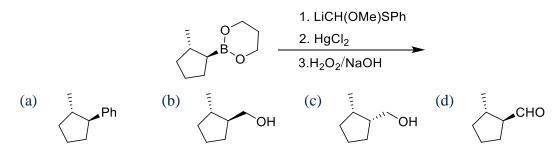


(c)
$$S_N 2$$
 and $H_{/, N} OH_{/, N} H$ (d) $S_N 1$ and $H_{/, N} OH_{/, N} H$

112. A concerted [1,3]-sigmatropic rearrangement took place in the reaction shown below. The structure of the resulting product is

113. The major products P and Q in the following reaction sequence are

_OCOPh



(a)

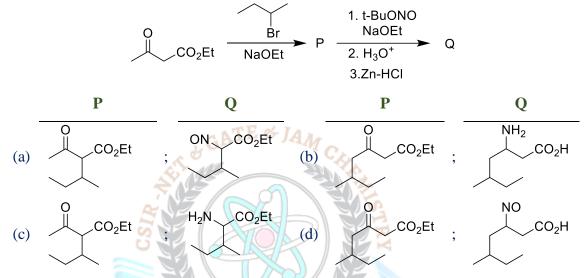
114. The major product formed in the following reaction sequence is

115. The major product formed in the following reaction is

116. The major products P and Q in the following reaction sequence are

$$(c) \qquad ; \qquad \bigcirc O \qquad ; \qquad \bigcirc O \qquad \downarrow O \qquad \downarrow$$

117. The major product of the following reaction is


118. The major product P and Q in the following reaction sequence are

Tiruchirappalli – 620 024

119. The major products P and Q in the following reaction sequence are

120. The major product of the following reaction is

- 121. According to the transition state theory, one of the vibrations in the activated complex is a loose vibration. The partition function for this loose vibration is equal to $(k_B$ is the Boltzmann's constant and h is the Planck's constant)
 - (a) $\frac{k_BT}{h}$

 $(b) \frac{h\nu}{k_BT}$

(c) k_BT

- $(d) \frac{k_B T}{h \nu}$
- 122. Possible term symbol(s) of the excited states of Na atom with the electronic configuration $[1s^22s^22p^63p^1]$ is/are
 - (a) ${}^2S_{1/2}$
- (b) ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$
- (c) ${}^{1}S_{0}$ and ${}^{1}P_{1}$
- (d) ${}^{3}P_{0}$ and ${}^{3}P_{1}$
- 123. For a simple cubic crystal, X-ray diffraction shows intense reflections for angles θ_1 and θ_2 which are assigned to [1 0 1] and [1 1 1] planes, respectively. The ratio

 $\sin\theta_1/\sin\theta_2$ is

(a) 1.5

(b) 1.22

(c) 0.82

(d) 0.67

- 124. Stability of lyophobic dispersions is determined by
 - inter-particle electric double layer repulsion and intra-particle van der Waals attraction
 - (b) inter-particle electric double layer attraction and intra-particle van der Waals repulsion
 - (c) inter-particle excluded volume repulsion and intra-particle van der Waals attraction
 - (d) inter-particle excluded volume attraction and intra-particle van der Waals GATE & JAM
- A certain 2-level system has stationary state energies E_1 and E_2 ($E_1 < E_2$) with normalized wavefunctions ϕ_1 and ϕ_2 respectively. In the presence of a perturbation V, the second-order correction to the energy for the first state (ϕ_1) will be

(b) $\frac{(\phi_1 | \mathbf{V} | \phi_2)}{\mathbf{F}_2 - \mathbf{F}_2}$ (c) $\frac{|(\phi_1 | \mathbf{V} | \phi_2)|^2}{\mathbf{F}_2 - \mathbf{F}_2}$

(d) $\frac{|\langle \varphi_1 | V | \varphi_2 \rangle|^2}{(F_1 - F_2)^2}$

The ¹H-NMR frequency at 1.0 T is 42.4 MHz. If the gyromagnetic ratios of ¹H and 13 C are 27×10^7 and 6.75×10^7 T⁻¹s⁻¹, respectively, what will be the 13 C frequency at 1.0 T?

- (a) 10.6 MHz (b) 169.6 MHz (c) 42.6 MHz
- (d) 21.3 MHz
- 10 mL aliquots of a mixture of HCl and HNO₃ are titrated are titrated **127.** conductometrically using a 0.1M NaOH and a 0.1M AgNO₃ separately. The titre volumes are V_1 and V_2 mL, respectively. The concentration of HNO₃ in the mixture is obtained from the combination.

(a) $V_1 - V_2$

(b) $2V_1 - V_2$

(c) $V_2 - V_1$

Given that $E^0_{(Cl_2/Cl^-)} = 1.35 \text{ V}$ and $K_{sp_{(AgCl)}} = 10^{-10}$ at 25 °C, E^0 corresponding to the electrode reaction is

$$\frac{1}{2}\text{Cl}_{2_{\left(g\right)}} + \text{Ag}^{+}_{\left(soln.\right)} + e^{-} \rightarrow \text{AgCl}_{\left(s\right)} \; ; \left[\frac{2.303 \; \text{RT}}{\text{F}} = 0.06V\right]$$

(a) 0.75 V

(b) 1.05 V

(c) 1.65 V

(d) 1.95 V

Ø

The standard EMF of the cell : Pt, $H_{2(g)}$ | HCl $_{(soln.)}$ | AgCl $_{(s)}$, Ag $_{(s)}$

(a) increases with T

(b) decreases with T

(c) remains unchanged with T

(d) decreases with [HCl]

130.	The molecule with the	ne smal	llest rotation	al constant (i	n the mic	rowave	e spectrum)
	among the following is	S					
	(a) N≡CH	(b) H(C≡CC1	(c) CC	l≡CF	((d) B≡CCl
131.	The spectroscopic tec	chnique	that can di	stinguish una	ambiguous	ly bety	ween trans-
	1, 2-dichloroethylene	and	cis-1, 2-dich	loroethylene	without	any	numerical
	calculation is						
	(a) microwave spectros	copy		(b) UV	-visible spe	ectrosco	ору
	(c) X-ray photoelectron	spectro	oscopy	(d) γ -	ray spectro	oscopy	
132.	The ground state elect	tronic c	onfiguration	of C2 using al	l electrons	is	
	(a) $\sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2p}^2 \pi_2^2$			(b) $\sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^2$			
	(c) $\sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^{*2} \pi_{2p}^2 \sigma_2^1$	$_{p}\sigma_{2p}^{*1}$	GATE	(d) $\sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^2$	$\sigma_{2s}^{*2}\pi_{2p}^{4}$		
133.	ν_{max} and K_m for an	enzym	e catalyzed r	eaction are 2	2.0×10^{-3}	$M s^{-1}$	and 1.0 \times
	10 ⁻⁶ M respectively.	The ra	te of the read	ction when th	e substrat	e conc	entration is
	$1.0 \times 10^{-6} \text{ M is}$						
	(a) $3.0 \times 10^{-3} \mathrm{s}^{-1}$	(b) 1	$.0 \times 10^{-3} \mathrm{s}^{-1}$	(c) 2.0	$\times 10^{-3} \text{ s}^{-}$	1	(d) $0.5 s^{-1}$
134.	The first order rate co	onstant	for a unimol	ecular gas ph	ase reactio	n A —	→ products
	that follows Lindema	nn mec	hanism is 2. ($0 s^{-1} at p_A =$	1 atm and	4.0 s	$^{-1}$ at $p_A =$
	2 atm. The rate const	ant for	the activation	step is			
	(a) $1.0 \text{ atm}^{-1} \text{ s}^{-1}$	(b) 2.0	atm ⁻¹ s ⁻¹	(c) 4.0 atm	$^{-1}$ s $^{-1}$	(d) 8.0	$a tm^{-1} s^{-1}$
135.	The molecule diboran	e belon	gs to the sym	metry point g	roup		
	(a) C_{2v}	(b) C _{2h}	EM A	(c) D _{2d}	(0	l) D _{2h}	
136.	Though a constant sh				anges the j	partitio	on function,
	the properties that do	not cha	ange are				
	(a) average energy, entr	ropy and	d heat capacity	(b) ave	erage energ	y and e	ntropy
	(c) average energy and	heat cap	pacity	(d) ent	ropy and he	eat capa	acity
137.	The vibrational free	quency	of a homo	-nuclear dia	tomic mo	lecule	is v. The
	temperature at which the population of the first excited state will be half that of the						f that of the
	ground state is given l	by					
	(a) $hv \cdot ln2/k_B$	(b) hv/	$(\ln 2 \cdot k_B)$	(c) ln2/(h	$\mathbf{v} \cdot \mathbf{k}_{\mathrm{B}}$)	(d) h	$v \cdot log2/k_B$
138.	The irreducible repr	esentati	ions of C_{2h}	are A_g, B_g, A_u	and B _u . T	he Ra	man active
	modes of trans-1, 3-bi	utadien	e belong to th	e irreducible	representa	tions	
	(a) A _g and B _g	(b) A _g	and A _u	(c) A _u and	B_{g}	(d) B _g	and B _u

(c) ${}^3F \rightarrow {}^1P$

(d) 3 F \rightarrow 3 P

139. The symmetry-allowed atomic transition among the following is

(b) 3 F \rightarrow 3 D

(a) 3 F \rightarrow 1 D

140.	The aver	age end-	to-end d	istance o	of a rand	lom coil	polymer	106 mg	onomers	(in units
	of segmen	nt length) is							
	(a) 10^6		(b	10^{5}		(c)	10^{4}		(d)	10^{3}
141.	A reversi	ble expa	nsion of	1.0 mol	of an id	leal gas i	s carried	l out fro	m 1.0 L	to 4.0 L
	under iso	thermal	conditio	n at 300	K. ΔG f	or this p	rocess is			
	(a) 300R	ln 2	(b)	600R ln	2	(c) -6	00R ln 2		(d) -30	0R ln 2
142.	The temp	perature-	depende	ence of the	he vapou	ır pressı	ire of so	lid A ca	n be rep	resented
	by log p	p = 10.0	$-\frac{1800}{T}$, and t	that of	liquid A	A by lo	$\mathbf{g} \mathbf{p} = 8$	$3.0-\frac{140}{T}$	$\frac{0}{2}$. The
	temperat	ure of th	e triple j	oint of A	A is	AMC.				
	(a) 200 K		.00) 300 K		300 (c	e) 400 K		(d)	500 K
143.	The non-	spontane	eous pro	cess amo	ng the fo	ollowing	is			
	(a) vapour	risation o	f superhe	eated wat	er at 105	S°C and 1	atm pre	ssure		
	(b) expans	sion of a	gas into	vacuum f	reezing					
	(c) freezir	ng of supe	ercooled	water at	–10 °C a	nd 1 atm	pressure	2		
	(d) freezin	ng of wat	er at 0 °C	and 1 at	m pressu	ire				
144.	The radi	al part	of a hy	drogenic	wave f	unction	is given	as r(α	$-r)^{-\beta r}$	α, β are
	constants	s). This fu	ınction i	s then id	lentifyab	le as	A	,		
	(a) 2s		(b)	3p	- ZIZ	(c)	4d		(d)	5f
145.	A norma	lised stat	e ф is co	nstructe	ed as a lin	near com	bination	of the g	round st	ate (φ ₀)
	and the f	irst exci	ted state	(ϕ_1) of	some h	armonic	oscillato	or with e	energies	1/2 and
	3/2 units	s, respect	ively. If	the aver	age ener	gy of the	state φ	is 7/6, t	he proba	ability of
	finding φ	ο ₀ in φ w	rill be							
	(a) 1/2		(ł	o) 1/3			(c) 1/4			(d) 1/5
				Ans	swer K	ey				
				<u>P</u> A	<u> ART - </u>	<u>B</u>				
Q.No	Ans		Q.No	Ans		Q.No	Ans		Q.No	Ans
21.	a		36.	a		51.	a		61.	a
22.	b		37.	d		52.	c		62.	d
Tiruchii	appalli – 620	0 024		www.csirc	oaching.co	<u>om</u>		ajchemac	ademy@gi	mail.com

 \bigoplus

23.	a
24.	c
25.	d
26.	a
27.	b
28.	a
29.	c
30.	d
31.	a
32.	a
33.	b
34.	b
35.	a

38.	d
39.	c
40.	b
41.	a
42.	c
43.	c
44.	a
45.	a
46.	b
47.	a
48.	d
49.	b
50.	d

	53.	c			
	54.	d			
	55.	b			
	56.	b			
	57.	b			
	58.	a			
	59.	b			
	60.	d			
EGJAMO					

63.	c
64.	d
65.	b
66.	c
67.	a
68.	c
69.	a
70.	b

UDYAM-TN-27-0019301

PART - C

Q.No	Ans
71.	d
72.	a
73.	a
74.	b
75.	c
76.	c
77.	c
78.	c

Q.No	Ans
91.	b
92.	a
93.	a
94.	a
95.	b
96.	c
97.	b
98.	b

Q.No	Ans
111.	d
112.	c
113.	a
114.	d
115.	b
116.	c
117.	c
118.	b

Q.No	Ans
131.	a
132.	d
133.	b
134.	b
135.	d
136.	d
137.	b
138.	a

79.	b
80.	b
81.	d
82.	c
83.	a
84.	a
85.	a
86.	a
87.	a
88.	d
89.	c
90.	a

99.	c
100.	d
101.	b
102.	d
103.	a
104.	a
105.	d
106.	d
107.	b
108.	b
109.	c
110	c

139.	b
140.	d
141.	с
142.	a
143.	d
144.	*
145	b

- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.
- © இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜேகெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்புசெய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக் குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப்பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

ajchemacademy@gmail.com