AJ Chem Academy

Reg.No: UDYAM-TN-27-0019301

CSIR-UGC-NET (Chemical Science) – June -2011

www.csircoaching.com

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching
- ✓ PG | Polytechnic TRB Chemistry Coaching

Features

- ➤ 300 ++ Live Classes
- ➤ 600 ++ Concept Wise Tests
- > 50 ++ Chapter Wise Tests
- > 50 ++ Model Tests
- 2000 ++ Problem Discussions
- Recorded Videos

- > A Well-Defined Curriculum
- > A Strong Subject Foundation
- > A Refined Learning Methodology
- Updated Study materials
- > Freshers Can easily understand
- Question banks

www.csircoaching.com

ajchemacademy@gmail.com

Q.21 – Q.70 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: –0.5). You are required to Answer Maximum 35 Questions.

 (a) Octahedral geometry only (b) Square-planar geometry only (c) Tetrahedral geometry only (d) Both octahedral and tetrahedral geometry [Ni(CN)₄]²⁻ and [NiCl₄]²⁻ complex ions are (a) Both diamagnetic (b) Both paramagnetic (c) Diamagnetic and paramagnetic respectively (d) Antiferromagnetic and diamagnetic respectively 23. Which of the following spectroscopic techniques will be useful to distinguish M-SCN and M-NCS binding modes? (a) NMR (b) IR (c) EPR (d) 	
 [Ni(CN)₄]²⁻ and [NiCl₄]²⁻ complex ions are (a) Both diamagnetic (b) Both paramagnetic (c) Diamagnetic and paramagnetic respectively (d) Antiferromagnetic and diamagnetic respectively 23. Which of the following spectroscopic techniques will be useful to distinguish M-SCN and M-NCS binding modes? 	
 (a) Both diamagnetic (b) Both paramagnetic (c) Diamagnetic and paramagnetic respectively (d) Antiferromagnetic and diamagnetic respectively 23. Which of the following spectroscopic techniques will be useful to distinguish M-SCN and M-NCS binding modes?	between
 (b) Both paramagnetic (c) Diamagnetic and paramagnetic respectively (d) Antiferromagnetic and diamagnetic respectively 23. Which of the following spectroscopic techniques will be useful to distinguish M-SCN and M-NCS binding modes? 	between
 (c) Diamagnetic and paramagnetic respectively (d) Antiferromagnetic and diamagnetic respectively 23. Which of the following spectroscopic techniques will be useful to distinguish M-SCN and M-NCS binding modes? 	between
(d) Antiferromagnetic and diamagnetic respectively 23. Which of the following spectroscopic techniques will be useful to distinguish M-SCN and M-NCS binding modes?	between
23. Which of the following spectroscopic techniques will be useful to distinguish M-SCN and M-NCS binding modes?	between
M-SCN and M-NCS binding modes?	between
(a) NMR (b) IR (c) FPR (d)	
(a) Tivite (b) It	Mass
24. Which of the following compound show a charge – transfer band?	
(a) Lanthanum nitrate (b) Ceric ammonium nitrate	
(c) Manganese(II) acetate (d) Copper (II) sulphate pentahydrat	•
25. Among SF_4 , BF_4^- , XeF_4 and ICI_4^- the number of species having two lone	pair of
electrons on the central atom according to VSEPR theory is:	
(a) 2 (b) 3 (c) 4	(d) 0
26. The FALSE statement for a polarographic measurement procedure is	
(a) O_2 is removed	
(b) Dropping mercury electrode is working electrode	
(c) I _d is proportional to concentration of electroactive species	
(d) Residual current is made zero by adding supporting electrolyte	
27. The ligand system present in Vitamin B ₁₂ is	
(a) Porphyrin (b) Corrin (c) Phthalocyanine (d) Crown ether	
28. Which one of the following exhibits rotational spectra?	
(a) H_2 (b) N_2 (c) CO (d) CO_2	
29. In Ziegler-Natta catalysis the commonly used catalyst system is:	
(a) $TiCl_4$, $Al(C_2H_5)_3$ (b) $(\eta^5-Cp)_2TiCl_2$, $Al(OEt)_3$	
(c) $VO(acac)_2$, $Al_2(CH_3)_6$ (d) $TiCl_4$, BF_3	

30.	Oxidation occurs very easily in case of		
	(a) $[(\eta^5-C_5H_5)_2Fe]$ (b) $[(\eta^5-C_5H_5)_2Co]$	(c) $[(\eta^5-C_5H_5)_2Ru]$ (d) $[(\eta^5-C_5H_5)_2Ru]$) ₂ Co] ⁺
31.	Complex in which organic ligand is having	g only σ -bond with metal is	
	(a) $W(CH_3)_6$ (b) $(\eta^5 - C_5H_5)_2Fe$ (c)	$K[PtCl3(C2H4)] (d) (\eta6-C6H6)2R$	lu
32.	In the molecules H ₂ O, NH ₃ and CH ₄		
	(a) The bond angles are same	(b) The bond distances are same	
	(c) The hybridizations are same	(d) The shapes are same	
33.	The correct order of stability of difluoride	s is	
	(a) $GeF_2 > SiF_2 > CF_2$	(b) $CF_2 > SiF_2 > GeF_2$	
	(c) $SiF_2 > GeF_2 > CF_2$	(d) $CF_2 > GeF_2 > SiF_2$	
34.	The number of possible isomers for [Ru(b	$(py)_2Cl_2$ is $(bpy = 2,2' - bipyridine)$)
	(a) 2 (b) 3	(c) 4 (d) 5	
35.	The species ¹⁹ Ne and ¹⁴ C emit a positron	and β-particle respectively. The re	sulting
	species formed are respectively		
	(a) 19 Na and 14 B (b) 19 F and 14 N	(c) 19 Na and 14 N (d) 19 F a	and ¹⁴ B
36.	Cis and trans complexes of the type [PtA ₂	X ₂] are distinguished by	
	(a) Chromyl chloride test (b) carbylamin	ne test (c) Kurnakov test (d) Rin	g test
37.	The term symbol of Man mole		ıration
	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (1\pi_u)^1 (1\pi_u)$	is:	
	(a) $^{1}\Sigma_{g}^{+}$ (b) $^{3}\Sigma_{g}^{-}$	(c) $^{1}\Sigma_{g}^{-}$ (c)	d) $^3\Sigma_g^+$
38.	A process is carried out at constant vol	ume and at constant entropy. It	will be
	spontaneous if:		
	(a) $\Delta G < 0$ (b) $\Delta H < 0$	(c) $\Delta U < 0$ (d) ΔA	. < 0
39.	The half-life of a zero-order reaction (A —	\rightarrow P) is given by (k = rate constant):	:
	(a) $t_{\frac{1}{2}} = \frac{[A]_0}{[2k]}$ (b) $t_{\frac{1}{2}} = \frac{2.303}{k}$	(c) $t_{\frac{1}{2}} = \frac{[A]_0}{k}$ (d) $t_{\frac{1}{2}} =$	$= \frac{1}{K[A]_0}$
40.	For an aqueous solution at 25 °C, the Deb	ye-Huckel limiting law is given by	
	(a) $\log \gamma_{\pm} = 0.509 Z_{+}Z_{-} \sqrt{\mu}$	(b) $\log \gamma_{\pm} = 0.509 Z_{+}Z_{-} \mu$	l
	(c) $\log \gamma_{\pm} = -0.509 Z_{+}Z_{-} \sqrt{\mu}$	(d) $\log \gamma_{\pm} = -0.509 Z_{+} Z_{-}$	$ \mu^2 $
41.	The microwave spectrum of a molecule	e yields three rotational constant	s. The
	molecule is		
	(a) Prolate symmetric top	(b) Spherical top	
	(c) Asymmetric top	(d) Oblate symmetric top	

The Q band in the vibrational spectrum of acetylene is observed in the

	(a) C-C stretching	mode	(b) C-H symmetric stretc	ching mode
	(c) Bending mode		(d) C-H antisymmetric s	tretching mode
43.	The Stark splitting	g for a given field is	larger for a molecule A	X as compared to BX
	Which one of the f	collowing is true? (µ	is the dipole moment)	
	(a) $\mu_{AX} = \mu_{BX}$	(b) $\mu_{AX} > \mu_{BX}$	(c) $\mu_{AX} < \mu_{BX}$	(d) $\mu_{BX} = 2\mu_{AX}$
44.	The adsorption of	a gas on a solid surf	ace exhibits the following	isotherm. Which one
	of the following sta	atements is true?		
		†		
45.	(b) Adsorption is m(c) Heat of adsorption(d) Heat of adsorptionIn a chemical research	ion is independent of nultilayer on varies monotonication varies exponential action, $A_{(s)} + B_{(g)} =$	ally with coverage lly with coverage C(g). The total pressure.	re at equilibrium is
	6 atm. The value	of equilibrium const	ant is	
	(a) $\frac{1}{2}$	(b) 9	(c) 1	(d) 36
46.	A molecule, AX, l	has a vibrational en	ergy of 1000 cm ⁻¹ and	rotational energy of
	10 cm ⁻¹ . Anothe	r molecule, BX, h	as a vibrational energ	y of 400cm^{-1} and
	rotational energy 4	40 cm ⁻¹ . Which one	of the following statemen	nts about the coupling
	of vibrational and	rotational motion is	true?	
	(a) The coupling is	stronger in BX		
	(b) The coupling is	stronger in AX		
	(c) Magnitude of co	oupling is same in bot	h AX and BX	
	(d) There is no coup	oling in both AX and	BX	
47.	At room temperat	ure, which molecule	has the maximum rotati	onal entropy?
	(a) H ₂	(b) 0 ₂	(c) D ₂	(d) N ₂
48.	The normalized hy	y <mark>drogen</mark> atom 1s wa	ve function is given by Ψ	$a_{1s} = \frac{1}{\sqrt{\pi}} \left(\frac{\varsigma}{a_0}\right)^{3/2} e^{-\varsigma r/a_0}$
	where $\varsigma = 1$ and	energy is -0.5 au	. If we use a normalized	wavefunction of the

42.

above form with $\varsigma \neq 1$, the average value of energy of the ground state of hydrogen atom is:

(a) Greater than -0.5 au

(b) Equal to -0.5 au

(c) Less than -0.5 au

(d) Equal to ς times -0.5 au

49. A constant of motion is defined by the equation:

(a) [H, A] = 0

(b) < [H, A] >= 0

(c) A = f(H)

(d) $A^{\dagger} = A$

50. The Hermitian conjugate of operator d/dx, called $(d/dx)^{\dagger}$, is actually equal to

(a) -d/dx

(b) d/dx

(c) i(d/dx)

An ideal gas expands by following an equation $PV^a = constant$. In which case does 51. one expect heating?

(a) 3 > a > 2

(b) 2 > a > 1 (c) 0 < a < 1

(d) 1 < a < 0

If $y^2 = 4x$ and 0.1% error is incurred for x, the percentage error involved in y will be

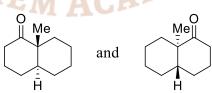
(a) 0.4

(b) 0.025

(c) 0.1

(d) 0.05

53. The configurations at the two stereocentres in the compound given below are


(a) 1R, 4R

(b) 1R, 4S

(c) 1S, 4R

(d) 1S, 4S

54. The two compounds given below are

(a) Enantiomers

(b) Identical

(c) Diastereomers

(d) Regioisomers

A suitable catalyst for bringing out the transformation given below is 55.

(a) BF₃.Et₂O

(b) NaOEt

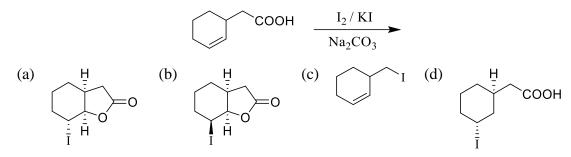
(c) Tungsten lamp (d) Dibenzoyl peroxide

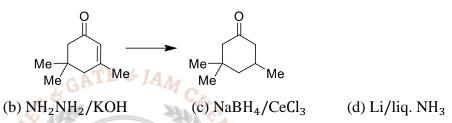
56. Thermolysis of allyl phenyl ether generates

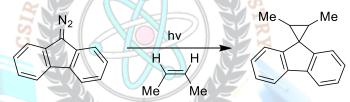
(a) o-allylphenol only

(b) o- and p-allylphenols

(c) o-, m- and p-allylphenols


(d) m-allylphenol only




57. The major product formed in the reaction given below is

58. The most suitable reagent for the following transformation is

59. The intermediate involved in the reaction given below is

(a) Free radical

(a) LiAlH₄

- (b) carbocation
- (c) carbanion
- (d) carbene
- 60. In the most stable conformation of trans-1-t-butyl-3-methylcyclohexane, the substituents at C-1 and C-3, respectively, are
 - (a) axial and equatorial

(b) equatorial and equatorial

(c) equatorial and axial

(d) axial and axial

61. Among the carbocations given below

P Q R

(a) Homoaromatic ; Antiaromatic ; Aromatic

(b) Aromatic ; Antiaromatic ; Homoaromatic

(c) Antiaromatic ; Aromatic ; Homoaromatic

(d) Homoaromatic ; Aromatic ; Antiaromatic

- **62.** The order of carbonyl stretching frequency in the IR spectra of ketone, amide and anhydride is:
 - (a) Anhydride > Amide Ketone
 - (b) Ketone Amide Anhydride
 - (c) Amide Anhydride Ketone >
 - (d) Anhydride > Ketone Amide
- In the mass spectrum of the compound given below, during the a-Cleavage, the order **63.** of preferential loss of groups is

$$Et \xrightarrow{\mathsf{OH}} \mathsf{OH}$$

$$\mathsf{C}_3\mathsf{H}_7$$

- Me $> C_3H_7$
- Me
- 64. The reaction given below is an example of

- (a) 1,3-sigmatropic hydrogen shift
- (b) 1,3-sigmatropic methyl shift
- (c) 1,5-sigmatropic hydrogen shift
- (d) 1,5-sigmatropic methyl shift
- **65.** The concerted photochemical reaction between two olefins leading to a cyclobutane ring is
 - (a) $\pi^2 s + \pi^2 a$ cycloaddition

(b) $\pi^2 s + \pi^2 s$ cycloaddition

(c) $\sigma^2 s + \sigma^2 a$ cycloaddition

- (d) $\pi^2 s + \sigma^2 a$ cycloaddition
- **66.** Addition of BH₃ to a carbon-carbon double bond is
 - (a) anti-Markovnikov syn addition
- (b) anti-Markovnikov anti addition

(c) Markovnikov syn addition

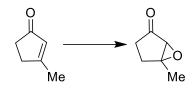
- (d) Markovnikov anti addition
- **67.** The absorption at λ_{max} 279 nm ($\epsilon = 15$) in the UV spectrum of acetone is due to
 - (a) $\pi \pi^*$ transition (b) $n \pi^*$ transition
- (c) $\sigma \sigma^*$ transition
- (d) $\pi \sigma^*$ transition

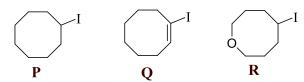
68. The reaction given below is an example of

(a) E2 Elimination

(b) E1 Elimination

(c) syn-Elimination


(d) E1cB-elimination



69. The suitable reagents for the following conversion is:

- (a) m-CPBA
- (b) $H_2O_2/AcOH$
- (c) ^tBuOH/HCl
- (d) $H_2O_2/NaOH$

70. The relative rates of solvolysis of iodides P-R are

- (a) R > P > Q
- (b) R > Q > P (c) Q > R > P
- (d) Q > P > R

Q.71 - Q.145 Multiple Choice Question (MCQ), carry FOUR marks each (for each wrong answer: -1). You are required to Answer Maximum 25 Questions.

- Alkali metal superoxides are obtained by the reaction of **71.**
 - (a) Oxygen with alkali metals in liquid ammonia
 - (b) Water with alkali metals in liquid ammonia
 - (c) H₂O₂ with alkali metals
 - (d) H₂O₂ with alkali metals in liquid ammonia
- **72.** H₂O₂ reduces,

- (a) P and Q only
- (b) Q and R only
- (c) R and S only
- (d) Q and S only
- Match list I (Compounds) with list II (application) and select the correct answer using **73.** the codes given below the lists.

	List I		List II
(P)	Trisodium phosphate	(i)	Plasticizer
(Q)	Triarylphosphates	(ii)	Water softener
(R)	Triethylphosphate	(iii)	Toothpaste
(S)	Calcium hydrogen phosphate	(iv)	Insecticides

	(c) ii ; iii ; iv	v ; i	(d)	iii ; i	; ii	; iv	
74.	Among the following	ng statements, ide	ntify the	correct o	ones for	compl	exes of
	lanthanide (III) ion.						
	(i) Metal - Ligan	d bond is significant	tly ionic				
	(ii) Complexes rarely show isomerism						
	(iii) The coordinate	tion number is not n	nore than 8	}			
	(iv) The magnetic	moments are not ac	ccounted ev	en appro	ximately	by spin	n only
	value for maj	ority of lanthanides					
	(a) i, ii and iv only	(b) i, ii and iii only	y (c) ii	and iii or	nly (c	l) i and	iv only
<i>75.</i>	According to VSEPI						
		(b) SO_4^{2-}	6.8			SO ₂ Cl ₂	
76.	The complex [Mn(H			5	best reaso	on for i	it is
	(a) The complex does	7	- \ SY				
	(b) d-d transitions her			2 2			
	(c) d-d transitions her						
	(d) d-d transitions her			•			
77.	The highest occupied	~		y are (tak	ke x axis a	as inter	nuclear
	axis)	UDYAM-TN-27-	.0019301				
	(a) $\sigma_{2p_x}, \pi_{2p_y}^*$	(b) π_{2p_y} , π_{2p_z}	(c) σ_2^*	p_x , σ_{2p_x}	(d) $\pi_{2p_y}^*$	$,\pi_{2p_{\mathbf{z}}}^{*}$
78.	The correct order of			M			
		$0_4^{2-} < V0_4^{3-}$					
	(c) $MnO_4^- > Cr$	$0_4^{2-} < VO_4^{3-}$	(d)	MnO_4^-	$< CrO_4^2$	_ >	VO_4^{3-}
79.	Carboxypeptidase co	ontains:					
	(a) Zn(II) and hydroly	rses CO ₂	(b) Zn(II)	and hydro	olyses per	otide bo	onds
	(c) Mg(II) and hydrol	yses CO ₂	(d) Mg(II	and hydi	rolyses pe	ptide b	onds
80.	In the EPR spectrum	n of tetragonal Cu(II	I) complex,	when $\mathbf{g}_{ }$	$> \mathbf{g}_{\perp} > \mathbf{g}$	_e the u	npaired
	electron resides in th	e orbital:					
	(a) d _{xy}	(b) $d_{x^2-y^2}$		(c) d_{z^2}			(d) d_{xz}
81.	The oxidative addition	on and reductive elim	mination st	eps are fa	voured b	\mathbf{y}	
	(a) Electron rich meta	1 centres					
	(b) Electron deficient	metal centers					
	(c) Electron deficient	and electron rich met	tal centers re	espectively	y		

- (d) Electron rich and electron deficient metals centers respectively
- 82. Identify the order according to increasing stability of the following organometallic compounds,
 - (a) $Ti(CH_2Ph)_4 < Ti(i-Pr)_4 < TiEt_4 < TiMe_4$
 - $(b) \quad TiEt_4 \qquad \qquad < \quad TiMe_4 \qquad < \quad Ti(i\text{-Pr})_4 \quad < \quad Ti(CH_2Ph)_4$
 - (c) $Ti(i-Pr)_4$ < $TiEt_4$ < $TiMe_4$ < $Ti(CH_2Ph)_4$
 - (d) $TiMe_4$ < $TiEt_4$ < $Ti(i-Pr)_4$ < $Ti(CH_2Ph)_4$
- Among the metals Mn, Fe, Co and Ni the ones those would react in its native form 83. directly with CO giving metal carbonyl compounds are
 - (a) Co and Mn
- (b) Mn and Fe
- (c) Fe and Ni
- (d) Ni and Co
- The molecule with highest number of lone-pairs and has a linear shape based on 84. **VSEPR** theory is
 - (a) CO_2

- (b) I_3^-
- (c) $N0_2^-$

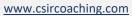
(d) NO_2^+

Given $Ag^+ + e \rightarrow Ag \quad E^0 = 0.50 \text{ V}$ 85. $Cu^{2+} + 2e \rightarrow Cu \quad E^0 = 0.34 \text{ V}$

> A 100 ml solution is 1080 mg with respect to Ag⁺ and 635 mg with respect to Cu²⁺. If 0. 1 mg Ag⁺ left in the solution is considered to be the complete deposition of Ag⁺, the cathode potential, so that no copper is deposited during the process, is:

- (a) 0.16 V
- (b) 0.84 V
- (c) 0.31 V
- (d) 0.16 V
- In the H₂Ru₆(CO)₁₈ cluster, containing 8-coordinated Ru centres, the hydrogen 86. atoms are:
 - (a) Both terminal

- (b) One terminal and the other bridging
- (c) Both bridging between two Ru centre (d) Both bridging between three Ru centre
- **87.** In the hydroformylation reaction, the intermediate CH₃CH₂CH₂CO(CO)₄:
 - (a) Forms an acyl intermediate CH₃CH₂CH₂COCo(CO)₃
 - (b) Forms an adduct with an olefin reactant
 - (c) Reacts with H₂
 - (d) Eliminates propane
- 88. **Statement I**: The sizes of Zr and Hf are similar
 - **Statement II**: Size of Hf is affected by lanthanides contraction
 - (a) Statements I and II are correct and II is correct explanation of I
 - (b) Statement I and II are correct but II is not a correct explanation of I



Consider the follow	wing compounds, the n	uciear quadrupoie spii	tting are observed
K	L		M
SnF ₄	SnC		R ₃ SnCl
(a) (K), (L) and (M	(b) (K) and (L) only	(c) (L) and (M) only	(d) (K) and (M)
Consider two red	ox pairs (i) Cr(II)/Ru	u(III) and (ii) Cr(II)	/Co(III). The rat
acceleration in goi	ing from a outer-spher	e to a inner-sphere m	echanism is lowe
(i) relative to (ii). l	ts correct explanation	is:	
(a) HOMO/LUMO	are σ^* and σ^* respective	ely	
(b) HOMO/LUMO	are σ^* and π^* respective	ely	
(c) HOMO/LUMO	are π^* and σ^* respective	vely	
(d) HOMO/LUMO	are π^* and π^* respective	ely	
The correct value	of isomer shift (in M	Iossbauer spectra) an	d its explanation
Fe(II)-TPP and Fe	e(III)-TPP respectively	from the following ar	e:
P			Q
0. 52 mm	1 s ⁻¹	0.45	mms ⁻¹
	UDYAM-TN-27-0	0019301	
R	· Stire	A	S
increase in s elec	tron density	decrease in s	electron density
	HEM A	TPP = tetra	aphenylporphyrii
(a) P and S; Q and	R	(b) P and	dR; Q and R
(c) Q and S; P and	S	(d) Q and	d S; P and R
In IR spectrum of	$(Co(CN)_5H)^{3-}$ the Co	-H stretch is observe	d at 1840 cm ⁻¹ .
(Co-D) stretch in	$[Co(CN)_5D]^{3-}$ will app	pear at nearly	
(a) 1300 cm^{-1}	(b) 1400 cm^{-1}	(c) 1500 cm^{-1}	(d) 1600 cm
For the following	complexes, the ideal oc	tahedral geometry wil	l not be observed
P	Q	R	\mathbf{S}
$[Ni(H_2O)_6]^{2+}$	$[Mn(H_2O)_6]^{2+}$	$[Cr(H_2O)_6]^{3+}$	$[\mathrm{Ti}(\mathrm{H}_2\mathrm{O})_6]^3$
(a) P and S	(b) R and S	(c) Q only	(d) S onl

	(a) 3		(b) 4		(c) 5		(d) 6
95.	For a given r	nuclear	fission reaction	on, $\frac{235}{92}$ U +	${1 \atop 0}$ n $ ightarrow$ ${142 \atop 56}$ Ba	$+\frac{91}{36}$ Kr +	3_0^1 n
	The amount	of energ	gy (in kJ/mo	l) released d	uring this pro	cess is	
	(given ²³⁵ U	= 235 .	0439 amu,	142 Ba = 143	1.9164 amu,	91 Kr = 9	0.9234 amu,
	neutron = 1.	.00866	amu)				
	(a) 3.12×1	0^{12}	(b) 2.8 ×	10^{11}	(c) 1.0×10^{-1}	$)^{9}$ (d	$) 1.68 \times 10^{10}$
96.	The decomp	osition	of gaseous ac	etaldehyde	at T(K) follow	ws second o	order kinetics.
	The half-life	of this r	reaction is 40	0 s when ini	tial pressure i	s 250 Tor r	. What will be
	the rate con	nstant (i	in Torr ⁻¹ s ⁻	and half	e-life (in s) re	espectively,	if the initial
	pressure of t	he aceta	ldehyde is 20	00 Torr at tl	he same temp	erature?	
	(a) 10^5 and 5	00	(b) 10^{-5} a	nd 400	(c) 10^{-4} and 4	100 (d) 1	10^{-5} and 500
97.	For an enzyr	ne catal	yzed reaction	ı, a Linewea	ver-Burk plot	t gave the f	ollowing data:
	slope = 40	s & inte	ercept = 4 (mmol dm ⁻³	$(s^{-1})^{-1}$. If the	e initial co	ncentration of
	enzyme is 2.	5×10^{-1}	⁻⁹ mol dm ⁻³ ,	what is the o	catalytic effici	ency (in dn	n^{-3} mol $^{-1}$ s $^{-1}$)
	of the reaction	on?					
	(a) 10^5		(b) 10^6	الو 🔻	(c) 10^7		(d) 10^4
98.	A hydrogeni	c orbita	l with radial	function of	the form \mathbf{r}^{α} e	xp[-βr] ar	nd φ – part as
	ехр [-3і ф]	corresp	onds to	111-27-001			
	(a) $n > 4$, $\ell >$	3, m =	3	£13.	(b) n	$1 = 4, \ell = 3,$	m = -3
	(c) $n = 4, \ell >$	3, m =	3	- A C D	(d) n	$1 > 4, \ell = 3,$	m = -3
99.	For an asser	nbly of	molecules (r	nolar mass	= M) at temp	perature T	the standard
	deviation of	Maxwel	ler's speed is	approximat	ely		
	(a) $0.7\sqrt{\frac{RT}{M}}$		(b) $1.4\sqrt{\frac{RT}{M}}$		(c) $0.7\sqrt{\frac{M}{RT}}$		(d) $1.4\sqrt{\frac{M}{RT}}$
100.	The unpertu	rbed en	ergy levels of	a system are	$\in_0 = 0, \in_1 =$	2 and ∈ ₂ =	4. The second
	order correc	tion to e	energy for the	e ground stat	te in pressure	of the pert	ırbation V for
	which $V_{10} =$	2,V ₂₀ =	= 4 and V ₁₂ =	6 has been	found to be		
	(a) -6		(b) 0		(c) +6		(d) - 8
101.	Given the ch	aracter	table of the p	oint group (C_{3v}		
			E	2 <i>C</i> ₃	$3\sigma_v$ 1		
		A ₁	1	1	1	Z	_

Consider the reducible representation, Γ

Its irreducible components are

(a)
$$E + 2A_1 + 2A_2$$
 (b) $2E + A_1 + A_2$ (c) $3A_1 + 3A_2$ (d) $E^2 + 2A_1$

(b)
$$2E + A_1 + A_2$$

(c)
$$3A_1 + 3A_2$$

(d)
$$E^2 + 2A_1$$

102. Refer to the character table of the point group C_{3v} given above. Find which of the following transition is forbidden

(a)
$$a_1 \leftrightarrow a_1$$

(b)
$$a_1 \leftrightarrow e$$
 (c) $a_2 \leftrightarrow e$ (d) $a_1 \leftrightarrow a_2$

(c)
$$a_2 \leftrightarrow e$$

(d)
$$a_1 \leftrightarrow a_2$$

103. The electronic configuration for gadolinium (Gd) is $[Xe]4f^75d^16s^2$, where as that of Gd²⁺ is:

(a) [Xe]
$$4f^55d^06s^2$$
 (b) [Xe] $4f^66s^2$ (c) [Xe] $4f^65d^16s^1$ (d) [Xe] $4f^75d^1$

(b) [Xe]
$$4f^66s^2$$

(c) [Xe]
$$4f^65d^16s^1$$

(d) [Xe]
$$4f^75d^2$$

The Possible J Values for ³D term Symbol are **104.**

(a) 2

(b) 3

(d) 5

105. The energy levels of cyclobutadiene are $\alpha + 2\beta$, α , α and $\alpha - 2\beta$. The delocalization energy in this molecule is 0.00 (c) -8β

(b)
$$-48$$

$$(c) - 86$$

(d) 4α

106. The variation of equilibrium constant (K) of a certain reaction with temperature (T) is $\ln k = 3.0 + \frac{2.0 \times 10^4}{T}$ given R = 8.3 J K⁻¹ mol⁻¹, the values of ΔH° and ΔS° are: (a) $166 \text{ kJ mol}^{-1} \text{ and } 24.9 \text{ JK}^{-1} \text{ mol}^{-1}$ (b) $166 \text{ kJ mol}^{-1} \text{ and } -24.9 \text{ JK}^{-1} \text{ mol}^{-1}$

- (c) -166 kJ mol^{-1} and $24.9 \text{ JK}^{-1} \text{ mol}^{-1}$ (d) -166 kJ mol^{-1} and $-24.9 \text{ JK}^{-1} \text{ mol}^{-1}$

107. The chemical potential of component-1 in a solution of binary mixture is $\mu_1 = \mu_1^0 + \mu_2^0$ $RT \ln p_1$, when p_1 is the partial pressure of component-1 vapour phase. The standard state μ_1^0 is:

- (a) Independent of temperature and pressure (b) Depends on temperature and pressure
- (c) Depends on temperature only
- (d) Depends on pressure only
- 108. Debye Huckel screening length (k^{-1}) is a measure of size of diffuse ion cloud around an ion, provided $\sqrt{\frac{2e^2N_A}{\epsilon_0k_BT}} \approx 30 \left(nm\sqrt{mol\ kg^{-1}}\right)^{-1}$ at 298 K, which of the following values of k^{-1} is true for a 0.03 molal solution for Na_2SO_4 in water

ajchemacademy@gmail.com

 $(\epsilon_r \approx 100)$?

(a)
$$\frac{10}{9}$$
 nm

(b)
$$\frac{9}{10}$$
 nm

$$(c) \frac{10\sqrt{2}}{9} nm$$

(d)
$$\frac{9}{10\sqrt{2}}$$
 nm

109. If the ratio of composition of oxidized and reduced species in electrochemical cell is given as $\frac{[0]}{[R]} = e^2$, the correct potential difference will be

(a)
$$E - E^0 = + \frac{2RT}{nF}$$

(a)
$$E - E^0 = +\frac{2RT}{nF}$$
 (b) $E - E^0 = -\frac{2RT}{nF}$ (c) $E - E^0 = \frac{RT}{nF}$ (d) $E - E^0 = -\frac{RT}{nF}$

(c)
$$E - E^0 = \frac{RT}{nF}$$

(d)
$$E - E^0 = -\frac{RT}{nF}$$

110. If the equilibrium constants for the reactions I and II

I.
$$CO_{(g)} + H_2O_{(g)} \longrightarrow CO_{2(g)} + H_{2(g)}$$

II.
$$CH_{4(\sigma)} + H_2O_{(\sigma)} \longrightarrow CO_{(g)} + 3H_{2(g)}$$

are k1 and k2, the equilibrium constant for the reaction

$$CH_{4(g)} + 2H_2O_{(g)} \longrightarrow CO_{2(g)} + 4H_{2(g)}$$
 is:

(a)
$$k_1 + k_2$$

(a)
$$k_1 + k_2$$
 (b) $k_1 - k_2$ (c) $k_1 k_2$

$$\text{(d) }^{k_1}\!\big/_{k_2}$$

111. The virial expansion for a real gas can be written in either of the following forms:

$$\frac{P\overline{V}}{RT} = 1 + B_{p}P + C_{p}P^{2} + \dots$$

$$= 1 + B_{v}V + C_{v}V^{2} + \dots$$

If $B_v = \alpha B_p$, the value of α would be 19301

(d) RT

112. A certain system of non-interacting particles has the single-particle partition function $f = A \frac{T^m}{v}$ where A is some constant. The average energy per particle will be

- (a) mkT
- (b) AkT
- (c) κT/m
- (d) $\kappa T/A$

113. Observe the following aqueous solutions of same compound. All the measurements are made at the same wavelength and same temperature.

Solution P: The transmittance of 0.1 mol dm⁻³ using 1 cm cell is 0.5

Solution Q: The optical density of 0.5 mol dm^{-3} is measured using 1 mm cell

Solution R: The transmittance of this solution is 0.1

The optical density of these solutions follow the order:

(a)
$$P > Q > R$$

(b)
$$Q > R > P$$

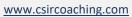
(c)
$$Q > P > R$$

(d)
$$R > P > Q$$

The rotational constant of $^{14}N_2$ is 2 cm $^{-1}$. The wave number of incident radiation in a Raman spectrometer is 20487 cm⁻¹. What is the wave number of first scattered stokes line (in cm⁻¹) of ¹⁴N₂?

(d) 20495

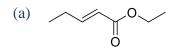
CSIR-UGC-NET (Chemical Science) June - 2011


(c) 20499

(b) 20475

115.	For a certain particle	encountering	g a barrier, th	ne tunneling	probability is
	approximately e^{-10} . If t	the mass is ha	lved and width	of the barrie	er (rectangular)
	doubled, approximate va	lue of the tuni	neling probabilit	y will be	
	(a) $e^{-10/\sqrt{2}}$	(b) $e^{-10\sqrt{2}}$	(c) e ⁻	$\cdot 20\sqrt{2}$	(d) e^{-10}
116.	An operator-A is defined	\mathbf{l} as $\mathbf{A} = -\frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}$	+ x. Which one	of the followin	ng statements is
	true?				
	(a) A is Hermitian operator	r	(b) A [†] is an anti	hermitian ope	rator
	(c) Both AA^{\dagger} and $A^{\dagger}A$ are	Hermitian	(d) AA [†] is Herm	nitian, but A [†] A	is antihermitian
117.	Isothermal which has fr	actional cover	rage, linearly, do	ependent on	pressure at low
	pressures but almost inde	ependent at hi	gh pressure is ca	ılled	
	(a) BET isotherm	1350		(b) Langmuir	isotherm
	(c) Freundlich isotherm		Si	(d) Temkin is	otherm
118.	A one-dimensional cryst	tal of lattice of	limension 'a' is	metallic. If	the structure is
	distorted in such a way th	hat the lattice	dimension is enh	nanced to '2a'	•
	(a) The electronic structure	e remains unch	anged		
	(b) The width of conduction	on band decreas	ses and a band gap	p is generated	
	(c) The width of conduction	on band increas	7-001950 T		
	(d) The width of the condu	ection band ren	nains unchanged	4	
119.	For a H ₂ molecule, the	ground state	wavefunction is	$\Psi_{(1,2)} = \varphi_{(1,2)}$	$\sigma_{(1,2)}$ where ϕ
	refers to the space part a	nd σ to the spi	n part. Given th	at $\phi_{(1,2)} = \phi$	(2,1), the form of
	$\sigma_{(1,2)}$ would be				
	(a) $\alpha_{(1)}\beta_{(2)}$ (b) $\alpha_{(2)}\beta_{(2)}$	$3_{(1)}$ (c)	$\alpha_{(1)}\beta_{(2)} - \alpha_{(2)}\beta_{(1)}$	(d) $\alpha_{(1)}$	$_{1)}\beta_{(2)} + \alpha_{(2)}\beta_{(1)}$
120.	There are several types of	of mean molai	masses for poly	mer and the	y are dependent
	on experimental metho	ds like: (P)	Osmometry, (Q) Light scat	tering and (R)
	sedimentation. Correct	relation betw	een mean mola	r masses an	d experimental
	methods is:				
	(a) $\overline{M}_n \Leftrightarrow (R), \overline{M}_w \Leftrightarrow (Q)$				\Rightarrow (R), $\overline{M}_z \Leftrightarrow$ (P)
	(c) $\overline{M}_n \Leftrightarrow (P), \overline{M}_w \Leftrightarrow (Q),$	$\overline{M}_z \Leftrightarrow (R)$	(d) \overline{M}	$_{n}\Leftrightarrow (P), \overline{M}_{w} \in$	\Rightarrow (R), $\overline{M}_z \Leftrightarrow$ (Q)
121.	An organic compound	$(C_7H_{12}O_2)$ ex	thibited the follo	owing data i	n the ¹ H-NMR
	spectrum.				

(a) 20479



7. 10 (1H, dt, J = 16 and 7. 2 Hz), 5. 90 (1H, dt, J = 16 and 2 Hz),

¹H-NMR : 4.1 (2H, q, J = 7.2 Hz), 2.10 (2H, m), 1.25 (3H, t, J = 7.2 Hz),0.90 (3H, t, J = 7.2 Hz) ppm.

The compound, among the choices given below, is:

122. In the broad band decoupled ¹³C-NMR spectrum, the number of signals appearing for the bicyclooctane P-R, respectively, are

- (a) 5, 4 and 8
- (b) 3, 2 and 5
- (c) 5, 4 and 5
- (d) 3, 2 and 8
- 123. In the mass spectrum of dichlorobenzene, the ratio of the peaks at m/z 146, 148 and 150 is
 - (a) 1:1:1
- (b) 3:3:1
- (c) 1:2:1
- (d) 9: 6: 1
- 124. The major compound-X formed in the following reaction exhibited a strong absorption at v_{max} 1765 cm⁻¹ in the IR spectrum. The structure of X is

(a) OH

(b) O

(с) О СНО

- (d) 0
- 125. The correct order of acidity of the following compounds P-R is

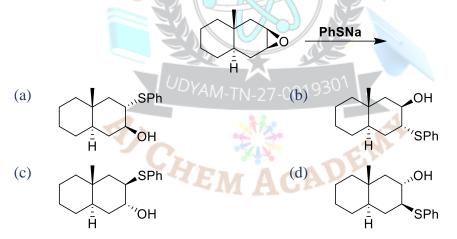
- (a) Q > R > P
- (b) R > Q > P
- (c) P > R > Q
- (d) P > Q > R
- The major product formed in the reaction sequence is **126.**

$$\begin{array}{c|c}
 & \text{CHO} \\
\hline
 & 1. \text{ CH}_2(\text{COOMe})_2 \\
\hline
 & \text{NaOMe} \\
\hline
 & 2. \Delta
\end{array}$$

Citronellal ATE & IAM

127. For the following allylic oxidation reaction, the appropriate statement, among the choices given below, is

- (a) Suitable reagent is KMnO₄ and the major product is X
- (b) Suitable reagent is KMnO₄ and the major product is Y
- (c) Suitable reagent is SeO_2 and the major product is X
- (d) Suitable reagent is SeO₂ and the major product is Y
- The intermediate-P and the major product-Q in the following conversion are **128.**



(d) P is benzyne and Q is

The major product formed in the following reaction is

The major product formed in the following reaction is

The major product formed in the reaction of glucose with benzaldehyde and p-TSA is:

Tiruchirappalli - 620 024

9

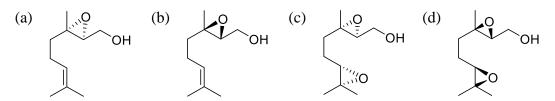
www.csircoaching.com

ajchemacademy@gmail.com

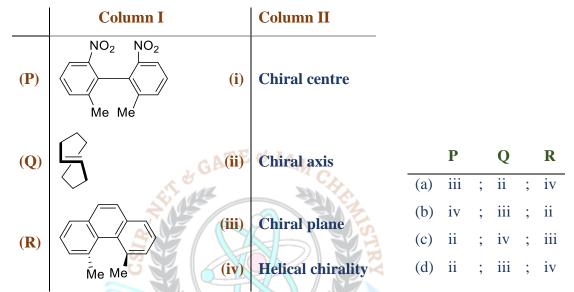
Papaverine on oxidation with potassium permanganate gives a ketone, which on fusion with potasium hydroxide gives

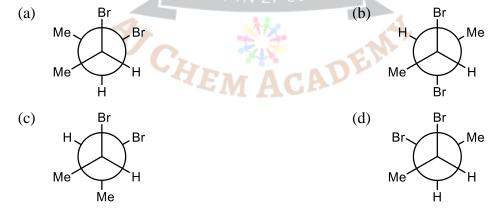
The major product formed on nitration (HNO₃/H₂SO₄) of uridine followed by **133.** reduction with tin and HCl is

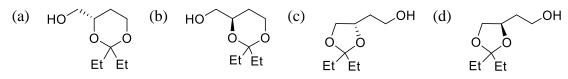
(a)
$$\begin{array}{c} NH_2 \\ N\\ N\\ R \end{array}$$
 (b) $\begin{array}{c} Me\\ N\\ N\\ R \end{array}$ (c) $\begin{array}{c} NH_2\\ N\\ N\\ R \end{array}$ (d) $\begin{array}{c} NH_2\\ N\\ N\\ N\\ R \end{array}$


In the following reaction sequence, the correct structures for the major products X and Y are

NO₂ +
$$\begin{pmatrix} K_2CO_3 \\ X \end{pmatrix}$$
 $\begin{pmatrix} X \\ Y \end{pmatrix}$ $\begin{pmatrix} X \\ Y \end{pmatrix}$ $\begin{pmatrix} Y \\ Me \end{pmatrix}$ $\begin{pmatrix} Y \\ NO_2 \end{pmatrix}$ $\begin{pmatrix} Y \\ Me \end{pmatrix}$ $\begin{pmatrix} Y \\ NO_2 \end{pmatrix}$ $\begin{pmatrix} Y \\ Me \end{pmatrix}$ $\begin{pmatrix} Y \\ NO_2 \end{pmatrix}$ $\begin{pmatrix} Y \\ Me \end{pmatrix}$ $\begin{pmatrix} Y \\ NO_2 \end{pmatrix}$ $\begin{pmatrix} Y \\ Me \end{pmatrix}$ $\begin{pmatrix} Y \\ NO_2 \end{pmatrix}$ $\begin{pmatrix} Y \\ Me \end{pmatrix}$ $\begin{pmatrix} Y \\ NO_2 \end{pmatrix}$ $\begin{pmatrix} Y \\ Me \end{pmatrix}$ $\begin{pmatrix} Y \\ NO_2 \end{pmatrix}$ $\begin{pmatrix} Y \\ Me \end{pmatrix}$ $\begin{pmatrix} Y \\ NO_2 \end{pmatrix}$


The major product formed in the following reaction is

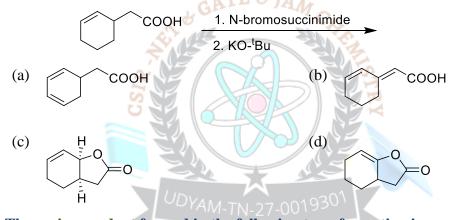



136. Match the following

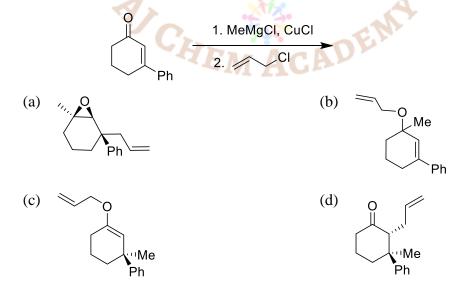
137. The gauche interaction values for Me/Me, Me/Br and Br/Br are 3. 3, 0. 8 and 3. 0 kJ/mol, respectively. Among the following, the most stable conformation of 2, 3-dibromobutane is

138. The major product formed in the reaction of (S)-1, 2, 4-butanetriol with 3-pentanone in the presence of a catalytic amount of p-TSA is

139. The major product formed in the following reaction is



Tiruchirappalli - 620 024



140. The major product formed in the following transformation is

141. The major product formed in the following transformation is

142. The structures of the major products X and Y in the following transformation are

(a)
$$X = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \end{pmatrix}$$
 ; $Y = \begin{pmatrix} & & \\ & & & \\ & & & \\ & & & \\ & & & \end{pmatrix}$

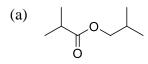
(b)
$$X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(c)
$$X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

143. Match the following:

	Column I	Column II		P		Q		R
P)	Pyrrole	Pictet -Spengler	(a)	i	;	ii	;	iii
Q)	1, 4-dihydropyridine ii)	Chichibabin	(b)	ii	;	iii	;	iv
R)	Isoquinoline UDYAMiii)	Paal-Knorr	(c)	iv	;	i	;	ii
	iv)	Hantzsch	(d)	iii	;	iv	;	i

144. Consider the following reaction:


In an experiment, 1.99 g of bromide-A on reaction with ethanolic potassium hydroxide gave 1.062 g of a mixture of the olefins B and C. If the ratio of olefins B:C formed is 2:1, the yields for their formation, respectively, are

- (a) 60 and 30%
- (b) 50 and 25%
- (c) 66 and 33%
- (d) 54 and 27%
- 145. An organic compound-X $(C_8H_{16}O_2)$ on treatment with methylmagnesium chloride generated two alcohols-Y and Z, whereas reaction of X with lithium aluminium hydride generated only a single alcohol-Z. Compound-Y on treatment with an acid yielded an olefine (C_6H_{12}) , which exhibited only a singlet at δ 1. 6 ppm in the ¹H-NMR spectrum. The compound X is

Answer Key

PART - B

Q.No	Ans
21.	d
22.	c
23.	b
24.	b
25.	a
26.	d
27.	b
28.	c
29.	a
30.	b
31.	a
32.	c
33.	b
34.	b
35.	b

S		
Q.No	Ans	
36.	c	
37.	b	
38.	c	
39.	a	
40.	c	
41.	c	
42.	c	
43.	b	
44.	a	
45.	c	
46.	a	
47.	b	
48.	c	
49.	b	
50.	a	

Ans
c
d
a
b
a
a
a
d
d
c

Q.No	Ans
61.	a
62.	d
63.	b
64.	c
65.	b
66.	c
67.	b
68.	d
69.	d
70.	a

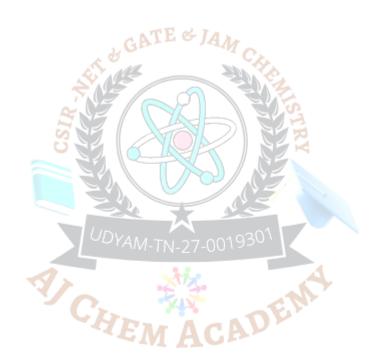
PART - C

Q.No	Ans
71.	a
72.	b
73.	a
74.	a
75.	b
76.	d
77.	a
78.	a
79.	b
80.	b
81.	d
82.	c
83.	c
84.	b
85.	c
86.	d
87.	a
88.	a
89.	d
90.	b

	:	
Q.No	Ans	
91.	a	
92.	a	
93.	d	
94.	b	
95.	d	
96.	d	
97.	c	
98.	b	
99.	a	
100.	a	1
101.	a	
102.	d	0
103.	d	
104.	b	1-
105.	a	
106.	c	
107.	c	λ
108.	a	
109.	a	
110		

71111		
	Q.No	Ans
	111.	d
	112.	a
	113.	d
	114.	b
	115.	b
	116.	c
TE&	117.	b
	118.	b
5	119.	c
	120.	c
	121.	a
	122.	b
	123.	d
	124.	d
ziiz.	125.	c
· KIN	126.	d
ИΑ	127.	c
	128.	d
	129.	c
	130.	b

Q.No	Ans
131.	d
132.	b
133.	c
134.	b
135.	a
136.	d
137.	b
138.	c
139.	b
140.	c
141.	d
142.	c
143.	d
144.	a
145	a


- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.

- இந்த வினாத்தாளின் எந்தப்பகுதியும் ஏஜே கெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்பு செய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக்குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப்பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

www.csircoaching.com