
AJ Chem Academy

CSIR-NET | GATE | JAM | CUET-PG | TRB | BARC Chemistry Coaching

CSIR-UGC-NET (Chemical Science)-June-2014

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching
- ✓ PG | Polytechnic TRB Chemistry Coaching

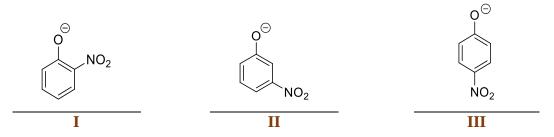
www.csircoaching.com

Features

- ➤ 300 ++ Live Classes
- ➤ 600 ++ Concept Wise Tests
- > 50 ++ Chapter Wise Tests
- > 50 ++ Model Tests
- ➤ 2000 ++ Problem Discussions
- > Recorded Videos

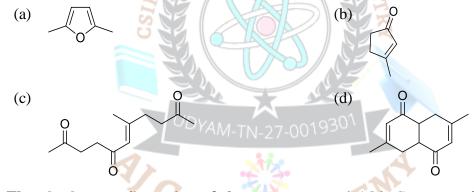
- > A Well-Defined Curriculum
- > A Strong Subject Foundation
- > A Refined Learning Methodology
- Updated Study materials
- > Freshers Can easily understand
- Question banks

ajchemacademy@gmail.com



Q.21 - Q.70 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -0.5). You are required to Answer Maximum 35 Questions.

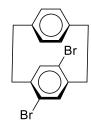
21. The correct order of basicity for the following anions is



(a) II > III > I

(b) I > II > III

(c) II > I > III

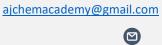

- (d) III > II > I
- 22. The major product formed in the reaction of 2, 5-hexanedione with P_2O_5 is:

23. The absolute configuration of the two stereogenic(chiral) centres in the following molecule is

- (a) 5R, 6R
- (b) 5R, 6S
- (c) 5S, 6R
- (d) 5S, 6S

24. The correct statement about the following molecule is

(a) Molecule is chiral and possesses a chiral plane


ajchemacademy@gmail.com

(=, 1.15156416 15 61	airal and possesses a ch	II al axis	
(c) Molecule is ac	hiral as it possesses a p	lane of symmetry	
(d) Molecule is ac	chiral as it possesses a c	entre of symmetry	
Consider the foll	owing statements abo	ut cis- and trans-dec	calins
[P] cis-isomer is	more stable than trans	s-isomer	
Q] trans-isomer	is more stable than ci	is-isomer	
R] trans-isomer	undergoes ring-flip		
S] cis-isomer un	dergoes ring-flip		
The correct state	ments among the abo	ve are	
a) Q and S	(b) P and R	(c) P and S	(d) Q and R
n bis(dimethyl	glyoximato)nickel(II),	the number of	Ni-N, Ni-O and intra
nolecular hydro	gen bond(s), respectiv	ely are	
a) 4, 0 and 2	(b) 2, 2 and 2	(c) 2, 2 and	d 0 (d) 4, 0 and 1
among the follow	ving species,		
Ni(II) as dimeth	ylglyoximate	Al(III) as oximate	Ag(I) as chloride
[P]		[Q]	[R]
nose that precip	itate with the urea hy	drolysis method are	
a) P, Q and R	(b) P and Q	(c) P and R	(d) Q and R
an enzyme fixe	es N ₂ in plants by evol	lving H ₂ , the number	er of electrons and protons
ssociated with t	hat, respectively are	3: 1	>
		(c) 6 and 8	(d) 8 and 6
a) 6 and 6	(b) 8 and 8	(c) 6 and 6	(/
,	Z F NA	ACAP	n emission among are:
,	stulated to always acco	ACAP	` '
he particles pos	stulated to always acco	ompany the positror	n emission among are:
The particles pos	stulated to always acco	ompany the positror	electron
The particles posineutrino [P] a) P, Q and R	(b) P and Q	ompany the positron neutrino [Q] (c) P and R	electron [R] (d) Q and R
neutrino [P] a) P, Q and R Coxicity of cadm	(b) P and Q	ompany the positron neutrino [Q] (c) P and R	electron [R]
The particles posineutrino [P] a) P, Q and R Coxicity of cadmino a	(b) P and Q	ompany the positron neutrino [Q] (c) P and R	electron [R] (d) Q and R
neutrino [P] a) P, Q and R coxicity of cadmusing the amino a	(b) P and Q ium and mercury in tacid residue, (b) Leucine	ompany the positron neutrino [Q] (c) P and R the body is being review (c) Lysine	electron [R] (d) Q and R versed by proteins, mainly (d) Cysteine
neutrino [P] (a) P, Q and R Toxicity of cadmusing the amino and an amino and an amino and amino amino and amino and amino amino and amino am	(b) P and Q ium and mercury in to acid residue, (b) Leucine th (Et)(Ph ₂)P at -78	(c) Lysine Co I CS2 to give	electron [R] (d) Q and R versed by proteins, mainly
The particles pos- neutrino [P] (a) P, Q and R Toxicity of cadmusing the amino a (a) Glycine NiBr ₂ reacts with upon standing at	(b) P and Q ium and mercury in the cid residue, (b) Leucine th (Et)(Ph ₂)P at -78 the room temperature to	(c) Lysine (c) Lysine (d) Con CS2 to give company the positror meutrino (e) P and R (f) Lysine	electron [R] (d) Q and R versed by proteins, mainly (d) Cysteine red compound 'P', which
The particles pos- neutrino [P] (a) P, Q and R Toxicity of cadmusing the amino a (a) Glycine NiBr ₂ reacts with upon standing at formula. The meaning the meaning at the meaning at the second standing at the meaning at the at the meaning at the m	(b) P and Q ium and mercury in the cid residue, (b) Leucine th (Et)(Ph ₂)P at -78 the room temperature to	(c) Lysine (c) Lysine (d) Con CS2 to give coments of 'P' and 'e	electron [R] (d) Q and R versed by proteins, mainly (d) Cysteine red compound 'P', which ompound, 'Q' of the same

Tiruchirappalli – 620 024

(c)) square	planar	and	octa	hedral	l
-----	----------	--------	-----	------	--------	---

(d) tetrahedral and octahedral

32. The correct non-linear and iso-structural pair is

- (a) SCl_2 and I_3^-
- (b) SCl_2 and I_3^+
- (c) SCl₂ and ClF₂
- (d) I_3^+ and ClF_2^-

33. Ozone present in upper atmosphere protects people on the earth

- (a) due to its diamagnetic nature
- (b) due to its blue colour
- (c) due to absorption of radiation of wavelength at 255 nm
- (d) by destroying chlorofluoro carbons

If L is a neutral monodentate ligand, the species, [AgL₄]²⁺, [AgL₆]²⁺ and [AgL₄]³⁺ **34.** respectively are

- (a) paramagnetic, paramagnetic and diamagnetic
- (b) paramagnetic, diamagnetic and paramagnetic
- (c) diamagnetic, paramagnetic and diamagnetic
- (d) paramagnetic, diamagnetic and diamagnetic

Chromite ore on fusion with sodium carbonate gives 35.

(a) Na_2CrO_4 and Fe_2O_3

- (b) Na₂Cr₂O₇ and Fe₂O₃
- (c) $Cr_2(CO_3)_3$ and $Fe(OH)_3$
- (d) Na_2CrO_4 and $Fe_2(CO_3)_3$
- The ligand(s) that is(are) fluxional in $[(\eta^5-C_5H_5)(\eta^1-C_5H_5)Fe(CO)_2]$ in the **36.** temperature range 221–298K, is (are)
 - (a) $\eta^5 C_5 H_5$
- (b) η^{1} -C₅H₅ (c) η^{5} -C₅H₅ and CO
- (d) n^1 -C₅H₅ and CO
- $[CoL_6]^{3+}$ is red in colour whereas $[CoL_6']^{3+}$ is green. L and L' respectively **37.** corresponds to,
 - (a) NH_3 and H_2O

- (b) NH₃ and 1, 10-phenanthroline
- (c) 1, 10-phenanthroline and NH₃
- (d) H₂O and NH₃

The oxidation state of Ni and the number of metal-metal bonds in $[Ni_2(CO)_6]^{2-}$ that **38.** are consistent with the 18 electron rule are

- (a) Ni(-II), 1 bond
- (b) Ni(IV), 2 bonds
- (c) Ni(-I), 1 bond (d) Ni(IV), 3 bonds

39. Structures of SbPh₅ and PPh₅ respectively are

- (a) trigonal bipyramidal, square pyramidal
- (b) square pyramidal, trigonal bipyramidal
- (c) trigonal bipyramidal, trigonal bipyramidal
- (d) square pyramidal, square pyramidal
- **40.** The typical electronic configurations of the transition metal centre for oxidative

addition

- (a) d^0 and d^8
- (b) d^6 and d^8
- (c) d^8 and d^{10}
- (d) d^5 and d^{10}
- 41. Gelatin added during the polarographic measurement carried out using dropping mercury electrode
 - (a) reduces streaming motion of Hg drop
 - (b) decreases viscosity of the solution
 - (c) eliminates migrating current
 - (d) prevents oxidation of Hg
- 42. The pK_a values of the following salt of aspartic acid are indicated below. The predominant species that would exist at pH = 5 is:

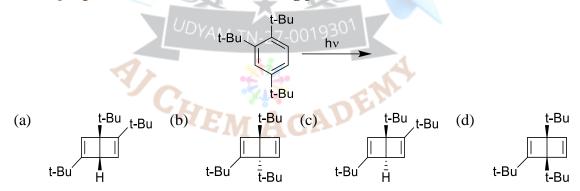
(a)
$$H_3N$$
 COOH (pK_a = 2.0)

COOH (pK_a = 3.9)

COOH (pK_a = 3.9)

 H_2N COO

COO

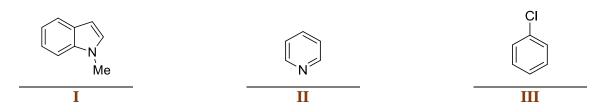

COO

COO

 H_3N COOH

 H_3N COO

43. The major product formed in the following photochemical reaction is:



- 44. The pair of solvents in which PCl₅ does NOT ionize, is
 - (a) CH₃CN, CH₃NO₂
- (b) CH₃CN, CCl₄
- (c) C_6H_6 , CCl_4
- (d) CH_3CN , C_6H_6
- 45. The major product formed in the following reaction is:

46. The correct order for the rates of electrophilic aromatic substitution of the following compound is

Tiruchirappalli - 620 024

> II >

(b) II > IШ

(c) III > II > I

- (d) I > III >
- The commutator of the kinetic energy operator, \widehat{T}_x and the momentum operator, \widehat{p}_X **47.** for the one-dimensional case is:
 - (a) iħ

(b) $i\hbar \frac{d}{dv}$

(c) 0

- (d) iħx
- 48. The major product formed in the reaction of trans-1-bromo-3-ethylcyclobutane with sodium iodide in DMF is:
 - (a)
- (b)
- Me (c)
- (d)

- **49.** When Si is doped with a Group V element,
 - (a) donor levels are created close to the valence band
 - (b) donor levels are created close to the conduction band
 - (c) acceptor levels are created close to the valence bond
 - (d) acceptor levels are created close to the conduction band
- **50.** The symmetry point group of propyne is
 - (a) C_3
- (b) C_{3V} (c) D_3
- For a first order reaction, $A \to Products$, the plot of $ln\left(\frac{[A]_t}{[A]_0}\right)$ vs time, where $[A]_0$ **51.** and $[A]_t$ refer to concentration at time t = 0 and t respectively, is
 - (a) a straight line with a positive slope passing through origin
 - (b) a straight line with a negative slope passing through origin
 - (c) an exponential curve asymptotic to the time axis
 - (d) a curve asymptotic to the $ln\left(\frac{[A]_t}{[A]_0}\right)$ axis
- **52.** In radical chain polymerization, the quantity given by the rate of monomer depletion, divided by the rate of propagating radical formation is called
 - (a) kinetic chain length

- (b) propagation efficiency
- (c) propagation rate constant
- (d) polymerization time

. Number	of rotational symmet	ry axes for triclinic cryst	al system is
(a) 4	(b) 3	(c) 1	(d) 0
. Generally	, hydrophobic collo	ids are flocculated effici	ently by ions of opposite ty
and high	charge number. This	s is consistent with the	
(a) peptiz	ation principle	(b) krafft theory	
(c) Hardy	-Schulze rule	(d) Langmuir ad	Isorption mechanism
. Examine	the following first o	order consecutive reaction	ons. The rate constant (in s
units) for	each step is given al	oove the arrow mark	
$P \xrightarrow{10^5} C$	$2 \xrightarrow{10^8} R \qquad P \xrightarrow{10^5}$	$Q \xrightarrow{10^3} R \qquad P \xrightarrow{10^7} Q$	$\xrightarrow{10^7} R \qquad P \xrightarrow{10^2} Q \xrightarrow{10^6} R$
]		II III	IV
Steady-st	ate approximation ca	an be applied to	
(a) I only	(b) III only	(c) II and III on	ly (d) I and IV onl
The figur	e below represents t	he path followed by a ga	s during expansion from X
	A) CH	(m) 3 2 1 2 3 4 5 V(L)	Y
(a) 0	(b) 9	(c) 5	i (d) 4
. An aque	ous solution of an o	ptically pure compound	of concentration 100 mg
1mL of v	vater and measured	in a quartz tube of 5 cr	n length was found to be -
	fic rotation is		
	fic rotation is (b) -60)° (c) -	-6° (d) +6
The special $(a) -30^{\circ}$	(b) -60	` '	-6° (d) +6 The correct relations observed

(a)
$$T_{\alpha}=T_{\beta}$$
 , $p_{\alpha}\neq p_{\beta}$, $\,\mu_{\alpha}=\mu_{\beta}$

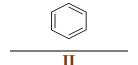
(b)
$$T_{\alpha} \neq T_{\beta}$$
, $p_{\alpha} = p_{\beta}$, $\mu_{\alpha} = \mu_{\beta}$

(c)
$$T_{\alpha}=T_{\beta}$$
 , $p_{\alpha}=p_{\beta}$, $\,\mu_{\alpha}=\mu_{\beta}$

(d)
$$T_{\alpha} = T_{\beta}$$
 , $p_{\alpha} = p_{\beta}$, $\, \mu_{\alpha} \neq \mu_{\beta}$

59. The number of configurations in the most probable state, according to Boltzmann formula, is

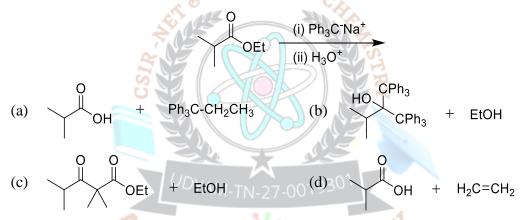
Tiruchirappalli – 620 024

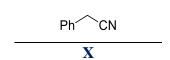

(b)
$$e^{-S/k_B}$$

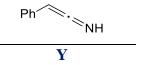

(c)
$$e^{-E/k_BT}$$

(d)
$$e^{-\Delta G/k_BT}$$

60. The correct match of the $^1\text{H-NMR}$ chemical shifts(δ) of the following species/compounds is




	1		Ш		Ш
(a)	5.4	;	7.2	;	9.2


61. The major products formed in the following are:

- 62. In a Diels-Alder reaction, the most reactive diene amongst the following is
 - (a) (4E)-1, 4-hexadiene

- (b) (4Z)-1, 4-hexadiene
- (c) (2E, 4E)-2, 4-hexadiene
- (d) (2Z, 4Z)-2, 4-hexadiene
- 63. Consider the statements about the following structures X and Y

- [P] X and Y are resonance structures ; [Q] X and Y are tautomers
- [R] Y is more basic than X
- ; [S] X is more basic than Y

The correct statement(s) among the above is/are

- (a) P and R
- (b) R only
- (c) Q and S
- (d) Q and R
- 64. Pericyclic reaction involved in one of the steps of the following reaction sequence is

(a) [1, 3] sigmatropic shift

(b) [3, 3] sigmatropic shift

(c) [1, 5] sigmatropic shift

- (d) [2, 3] sigmatropic shift
- 65. Atorvastatin (structure given below) is a

- (a) cholesterol lowering drug
- (b) blood sugar lowering drug

(c) anti-plasmodial drug

- (d) anti-HIV drug
- 66. The maximum bond order obtained from the molecular orbitals of a transition metal dimer, formed as linear combinations of d-orbitals alone, is
 - (a) 3

(b) 4

(c) 5

- (d) 6
- 67. The term symbol that is NOT allowed for the np^2 configuration is
 - (a) ${}^{1}D$
- (b) ${}^{3}P$
- (c) ${}^{1}S$
- (d) ${}^{3}D$
- 68. If the ionization energy of H atom is x, the ionization energy of Li²⁺, is
 - (a) 2x

(b) 3x

- (c) 9x
- (d) 27x
- 69. If temperature is doubled and the mass of the gaseous molecule is halved, the rms speed of the molecular will change by a factor of
 - (a) 1

(b) 2

 $(c)^{\frac{1}{2}}$

- (d) $\frac{1}{4}$
- 70. In the graph below, the correct option, according to Kohlrausch law, is

- (a) P is a weak electrolyte and Q is a strong electrolyte
- (b) P is a strong electrolyte and Q is a weak electrolyte
- (c) R is a strong electrolyte and S is a weak electrolyte
- (d) R is weak electrolyte and S is a strong electrolyte

Q.71 - Q.145 Multiple Choice Question (MCQ), carry FOUR marks each (for each wrong answer: -1). You are required to Answer Maximum 25 Questions.

- Reaction of $[Ru(NH_3)_5(isonicotinamide)]^{3+}$ with $[Cr(H_2O)_6]^{2+}$ occurs by inner **71.** sphere mechanism and rate of the reaction is determined by dissociation of the successor complex. It is due to the
 - (a) Inert ruthenium bridged to inert chromium centre
 - (b) Inert ruthenium bridged to labile chromium centre
 - (c) Labile ruthenium bridged to inert chromium centre
 - (d) Labile ruthenium bridged to labile chromium centre
- **72.** Consider the second order rate constants for the following outer-sphere electron transfer reactions:

$$[Fe(H_2O)_6]^{3+}/[Fe(H_2O)_6]^{2+} \ 4.0 \ M^{-1} sec^{-1}$$

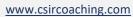
$$[Fe(phen)_3]^{3+}/[Fe(phen)_3]^{2+} \ 3.0 \times 10^7 \ M^{-1} \ (phen=1,10\text{-phenanthroline})$$

The enhanced rate constant for the second reaction is due to the fact that

- (a) The 'phen' is a π -acceptor ligand that allows mixing of electron donor and acceptor orbitals that enhances the rate of electron transfer
- (b) The 'phen' is a π -donor ligand that enhances the rate of electron transfer
- (c) The 'phen' forms charge transfer complex with iron and facilitates the electron transfer
- (d) The 'phen' forms kinetically labile complex with iron and facilitates the electron transfer
- The compound [Re₂(Me₂PPh)₄Cl₄] (M) having a configuration of $\sigma^2\pi^4\delta^2\delta^{*2}$ can **73.** be oxidized to M⁺ and M²⁺. The formal metal-metal order in M, M⁺ and M²⁺ respectively, are
 - (a) 3.0, 3.5 and 4.0 (b) 3.5, 4.0 and 3.0 (c) 4.0, 3.5 and 3.0 (d) 3.0, 4.0 and 3.5
- **74.** In low chloride ion concentration, the anticancer drug cis-platin hydrolyses to give a diaqua complex and this binds to DNA via adjacent guanine

Guanine

0



Ø

	The coordinatin	g atom of guanine to Pt(II) is			
	(a) N1	(b) N3	(c) N7	(d) N9		
75.	The ¹⁹ F-NMR sp	pectrum of ClF ₃ show				
	(a) doublet and tr	riplet for a T-shaped struc	ture			
	(b) singlet for a tr	rigonal planar structure				
	(c) singlet for a tr	rigonal pyramidal structur	re			
	(d) doublet and sa	inglet for a T-shaped struc	cture			
76.	The low temper	ature (-98 °C) ¹⁹ F-NMI	R spectrum of SF ₄ show	ws doublet of triplets.		
	It is consistent w	vith the point group sym	metry,			
	(a) C _{3v}	(b) C _{4v}	(c) T _d	(d) C_{2v}		
77.	Amongst organo	olithium (I), Grignard (II) and organoalumin	ium (III) compounds,		
	those react with	SiCl ₄ to give compound	containing Si-C bond	are		
	(a) I and II	(b) II and III	(c) I and III	(d) I, II and III		
78.	In its electronic	c spectrum, $[V(H_2O)_6]$	3+ exhibits two absor	rption bands, one at		
	17,800 (v_1) and the second at 25,700 (v_2) cm ⁻¹ . The correct assignment of these					
	bands, respectiv	ely, is				
	v_1		1			
	(a) ${}^3T_{1g}(F) \rightarrow$	$^{3}T_{2g}(F)$ \rightarrow $^{3}T_{1g}(F)$ \rightarrow 3r	$T_{1g}(P)_{9}30^{1}$			
	(b) ${}^3T_{1g}(F) \rightarrow$	${}^{3}T_{1g}(P)$, ${}^{3}T_{1g}(F) \rightarrow {}^{3r}$	$\Gamma_{2g}(P)$			
	$(c) {}^{3}A_{2g} \rightarrow {}^{3}T_{1}$	$_{\rm g}(F)$, $^{3}A_{2\rm g} \rightarrow ^{3}T_{2\rm g}$	(F)			
	$(d) {}^{3}A_{2g} \rightarrow {}^{3}T_{2}$	$_{g}(F)$, ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ $_{g}(F)$, ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$	(F)			
79.		mental as with hot and c		, respectively, give		
	(a) As_4O_6 and As_4O_6	$S_2(SO_4)_3$	(b) $As(NO_3)_5$ and A	$s_2(SO_4)_3$		
	(c) As_4O_6 and H_2	₃ AsO ₄	(d) H ₃ AsO ₄ and As ₄	0 ₆		
80.	The total valence electron count and the structure type adopted by the complex					
	$[Fe_5(CO)_{15}C]$ re	espectively, are				
	(a) 74 and nido	(b) 60 and closo	(c) 84 and arachno	(d) 62 and nido		
81.	¹ H-NMR spectr	um of $[(\eta^5-C_5H_5)Rh(C_5H_5)]$	$_{2}H_{4})_{2}$] at -20 °C show	ws a typical AA' XX'		
	pattern in the ol	efinic region. On increas	sing the temperature to	\sim 70 °C, the separate		
	lines collapse int	to a single line which is o	lue to			
	(a) free rotation of	of the ethylene ligand abou	ut the metal-olefin bond			
	(b) intramolecula	r exchange between the e	thylene ligands			

- (c) intermolecular exchange between the ethylene ligands
- (d) change in hapticity of the cyclopentadienyl ligand
- 82. The nuclides among the following, capable of undergoing fission by thermal neutrons, are

²³³ U	^{235}U	²³⁹ Pu	²³² Th	
P	Q	R	S	
(a) P, Q and S	(b) P, R and S	(c) Q, R and S	(d) P, Q and R	

- 83. The use of dynamic inert atmosphere in thermogravimetric analysis(TGA)
 - (a) decreases decomposition temperature
- (b) decrease weight loss

(c) reduces rate of decomposition

- (d) increases weight loss
- 84. The correct statements for hollow cathode lamp (HCL) from the following are
 - [P] HCL is suitable for atomic absorption spectroscopy (AAS)
 - [O] lines emitted from HCL are very narrow
 - [R] the hardening of lamp makes it unsuitable for AAS
 - [S] transition elements used in lamps have short life
 - (a) P, Q and R
- (b) Q, R and S
- (c) P, R and S
- (d) P, Q and S
- 85. Identify the correct statement about, $[Ni(H_2O)_6]^{2+}$ and $[Cu(H_2O)_6]^{2+}$
 - (a) All Ni-O and Cu-O bond lengths of individual species are equal
 - (b) Ni-O (equatorial) and Cu-O (equatorial)
 - (c) All Ni-O bond lengths are equal whereas Cu-O (equatorial) bonds are shorter than Cu-O (axial) bonds
 - (d) All Cu-O bond lengths are equal whereas Ni-O (equatorial) bonds are shorter than Ni-O (axial) bonds
- 86. Reaction of nitrosyl tetrafluoroborate to Vaska's complex gives complex-P with angle $\angle M$ -N-O = 124°. The complex-P and its N-O stretching frequency are, respectively
 - (a) $[IrCl(CO)(NO)(PPh_3)_2]BF_4$, 1620 cm⁻¹
 - (b) $[IrCl(CO)(NO)_2(PPh_3)](BF_4)_2$, 1730 cm⁻¹
 - (c) [IrCl(CO)(NO)₂(PPh₃)](BF₄)₂, 1520 cm⁻¹
 - (d) $[IrCl(CO)(NO)(PPh_3)_2]$, 1820 cm⁻¹
- 87. The correct order of decreasing electronegativity of the following atoms is,
 - (a) As > Al > Ca > S
- (b) S > As > Al > Ca
- (c) Al > Ca > S > As
- (d) S > Ca > As > Al

0

ajchemacademy@gmail.com

88. A 1:2 mixture of Me₂NCH₂CH₂CH₂PPh₂ and KSCN with K₂[PdCl₄] gives a square planar complex-P. Identify the correct pairs of donor atoms trans to each other in complex-P from the following combinations.

(a) I and II

(b) I and IV

(c) II and III

(d) III and IV

- For a low energy nuclear reaction, ^{24}Mg (d, α) ^{22}Na , the correct statements from the **89.** following are
 - [I]Kinetic energy of d particle is not fully available for exciting ²⁴Mg
 - [II]Total number of protons and neutrons is conserved
 - Q value of nuclear reaction is much higher in magnitude relative to heat of chemical reaction
 - [IV] Threshold energy is $\leq Q$ value

(a) I, II and III

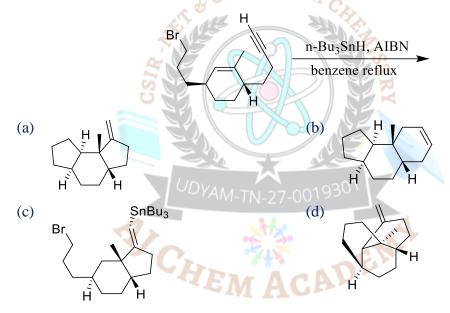
(b) I, II and IV (c) II, III and IV

(d) I, III and IV

90. At pH 7, the zinc(II) ion in carbonic anhydrase reacts with CO₂ to give:

 $Z_{n-O} = O \qquad (b) \qquad OH \quad O \\ Z_{n-C} = O \qquad O$

Zn C-O


- Molybdoenzymes can both oxidize as well as reduce the substrates, because 91.
 - (a) Mo(VI) is more stable than Mo(IV)
 - (b) Mo(IV) can transfer oxygen atom to the substrate and Mo(VI) can abstract oxygen atom from the substrate
 - (c) Conversion of Mo(VI) to Mo(IV) is not favoured
 - (d) Mo(VI) can transfer oxygen atom to the substrate and Mo(IV) can abstract oxygen atom from the substrate
- **92.** A comparison of the valence electron configuration of the elements, Sm and Eu suggests that
 - (a) Sm is a better one electron reductant than Eu
 - (b) Sm is a better one electron oxidant than Eu
 - (c) Facile oxidation state is +2 for both the elements
 - (d) Both of these display similar redox behaviour
- 93. The cooperative binding of O_2 in hemoglobin is due to
 - (a) a decrease in size of iron followed by changes in the protein conformation

- (b) an increase in size of iron followed by changes in the protein conformation
- (c) a decrease in size of iron that is NOT accompanied by the protein conformational changes
- (d) an increase in size of iron that is NOT accompanied by the protein conformational changes
- 94. Amongst the following which is not isolobal pairs
 - (a) $Mn(CO)_5$, CH_3
- (b) $Fe(CO)_4$, 0
- (c) $Co(CO)_3$, R_2Si (d) $Mn(CO)_5$, RS
- The correct order of the size of S, S^{2-} , S^{2+} and S^{4+} species is, **95.**
 - $> S^{2+} > S^{4+} > S^{2-}$
- (b) $S^{2+} > S^{4+} > S^{2-}$
- (c) $S^{2-} >$ $S > S^{2+} > S^{4+}$
- S^{2+} (d) $S^{4+} > S^{2-} > S$
- 96. The major product formed in the following reaction is:

97. The correct combination of reagents to effect the following conversion is:

- (i) = $Ph_3P^+CH_2OMeCl^-$, BuLi (a)
- (i) (b) = $H_2N-NHTs$
- (ii) = H_3O^+ , Jones reagent
- BuLi (2 equiv) (ii)
- (iii) **DMF**

(c) (i) = $H_2N-NHTs$

- (d) (i) = $ClCH_2CO_2Et$, LDA
- BuLi (2 equiv) (ii) =

= BF₃OEt₂ (ii)

(iii) =
$$CO_2$$
 (iii) = $DMSO$, $(COCl)_2$, Et_3N , -78 °C to rt

98. The major product formed in the following reaction is:

99. **Consider the following reaction**

The appropriate intermediate involved in this reaction is:

100. The correct ¹³C-NMR chemical shift(δ) values of carbons labelled p-t in the following ester are

	þ		q		r		S		ι
(a)	19	,	143	;	167	•	125	;	52
(b)	52	;	143	;	167	;	125	;	19
(c)	52	;	167	;	143	•	125	;	19
(d)	52	;	167	;	125	;	143	;	19

101. The products **P** and **Q** in the following reaction sequence are:

Tiruchirappalli - 620 024

ajchemacademy@gmail.com

- 102. The biosynthesis of isopentenyl pyrophosphate from acetyl CoA involves:
 - [P] Four molecules of acetyl CoA
- [Q] Three molecules of ATP
- [R] Two molecules of NADPH
- [S] Two molecules of lipoic acid

The correct options among these are

- (a) P, Q and R
- (b) P and Q
- (c) Q and R
- (d) P, R and S
- 103. Amongst the following, the major products formed in the following photochemical reactions are

104. The products P and Q in the following reaction sequence are:

www.csircoaching.com

BnO OMe

$$H_2N-NH_2$$
 P
 H_2N-NH_2
 H_2N
 H_2N

105. Anthranilic acid, on treatment with iso-amyl nitrite furnishes a product which displays a strong peak at 76(m/e) in its mass spectrum. The structure of the product is:

106. The organoborane-X, when reacted with Et₂Zn followed by p-iodotoluene in the

Tiruchirappalli - 620 024

presence of catalytic amount of $Pd(PPh_3)_4$ furnishes a tri-substituted alkene. The intermediate and the product of the reaction, respectively, are:

$$(a) \qquad H \qquad X$$

$$(a) \qquad H \qquad Zn \qquad and \qquad H$$

$$(b) \qquad H \qquad Zn \qquad and \qquad H$$

$$(c) \qquad H \qquad Zn \qquad and \qquad H$$

$$(d) \qquad H \qquad Zn \qquad and \qquad H$$

- 107. Using Boltzmann distribution, the probability of an oscillator occupying the first three levels (n = 0,1 and 2) is found to be $p_0 = 0.633$, $p_1 = 0.233$ and $p_3 = 0.086$. The probability of finding an oscillator in energy levels in $n \ge 3$ is,
 - (a) 0.032
- (b) 0.048
- (c) 0.952
- (d) 1.000
- 108. The major products P and Q in the following reaction sequence are

NO₂
$$\xrightarrow{\text{(i) PhNCO, Et}_3N}$$
 (P) $\xrightarrow{\text{H}_2, \text{ Raney NI}}$ (Q)

AcOH

$$\begin{array}{c|cccc} & & & & Q & \\ \hline & & & & & & Q & \\ \hline & & & & & & Q & \\ \hline & & & & & & Q & \\ \hline & & & & & & Q & \\ \hline & & & & & &$$

109. The correct combination of reagents required to effect the following conversion is

(i) (ii)

(a) Na, xylene, Me₃SiCl, heat ; H₃O⁺

(b) Na, xylene, heat ; H_2O_2 , NaOH

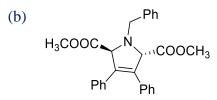
(c) NaOEt, EtOH ; Na, xylene, heat

(d) TiCl₃, Zn-Cu, Me₃SiCl, heat; H₃O⁺

110. An organic compound gives following spectral data:-

 $IR (cm^{-1})$: 2210, 1724 cm⁻¹

¹H-NMR (ppm) δ 1. 4 (t, J = 7.1 Hz, 3H), 4. 4 (q, J = 7.1 Hz, 2H)


¹³C-NMR (ppm) : δ 16, 62, 118, 119, 125, 127, 168

The compound is:

111. The major product formed in the following reaction is:

$$Ph$$
 \vdots
 Ph
 $+ Ph$
 \longrightarrow
 Ph
 \longrightarrow
 H_3COOC
 $COOCH_3$

(c)
$$H_3COOC$$
 N Ph H_3COOC Ph

(d)
$$H_3COOC$$
 Ph

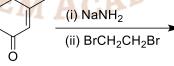
112. The correct combination of reagents for affecting the following sequence of reactions is

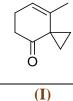
(b) O_2 , Rose Bengal, hv; $K^{+-}OOC-N=N-COO^{-}K^{+}$, AcOH

(c) O_2 , Rose Bengal, hv; H_2 , Pd/C (d) O_2 , Rose Bengal, Δ ; H_2 , Pd/C

113. The correct combination of reagents required to effect the following conversion is

(a) I_2 , HNO_3


- (b) s-BuLi, -78 °C followed by KI
- (c) NaOEt followed by ICH2CH2I
- (d) s-BuLi, -78 °C followed by ICH₂CH₂I
- 114. Consider a particle confined in a cubic box. The degeneracy of the level, that has an energy twice that of the lowest level, is
 - (a) 3

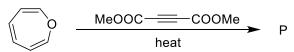

- (b) 1^{AM-TN-27-00193}

(d) 4

115. Only two products are obtained in the following reaction sequence. The structures of the products from the list I - IV are

(IV)

(a) I and II

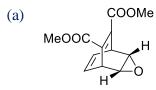

(b) II and IV

(II)

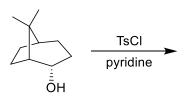
(c) I and III

(d) III and IV

116. The major product-P formed in the following reaction is:



The products **P** and **Q** in the following reaction sequence are:

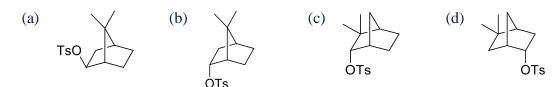

(a) $\alpha(1)\alpha(2)$

(b) $\beta(1)\beta(2)$

(c) $\frac{1}{\sqrt{2}} [\alpha(1)\beta(2) + \beta(1)\alpha(2)]$

The spin part would be:

- (d) $\frac{1}{\sqrt{2}} [\alpha(1)\beta(2) \beta(1)\alpha(2)]$
- The number of phases, components and degrees of freedom, when Ar is added to an equilibrium mixture of NO, O2 and NO2 in gas phase are, respectively,
 - (a) 1, 3, 5
- (b) 1, 4, 5
- (c) 1, 3, 4
- (d) 1, 4, 4
- 120. The major product formed in the following reaction is:



0

- 121. A particle in a one-dimensional harmonic oscillator in x-direction is perturbed by a potential λx (λ is a number). The first-order correction to the energy of the ground state
 - (a) is zero

(b) is negative

(c) is positive

- (d) may be negative or positive but NOT zero
- 122. The products **P** and **Q** in the following sequence of reactions are:

123. The mass spectrum of the product-P, formed in the following reaction, exhibits M, M+2, M+4 peaks in the ratio of about 1:2:1. The reagent HX and the product-P are:

124. Match the following natural products in column-I with their structural features in column-II

	Column-I	. 0	Column-II
(P)	Colchicine	(i)	Tetrahydrooxepine
(Q)	Strychnine	(ii)	Phenanthrene
(R)	Quinine	(iii)	Tropolone
(S)	Ephedrine	(iv)	Phenylethylamine
SIZ		(v)	Quinoline
C		(vi)	Benzofuran

Identify the correct match from the following

125. A particle in a one-dimensional box (potential zero between to a and infinite outside) has the ground state energy $E_0 = \frac{0.125h^2}{ma^2}$. The expectation value of the above Hamiltonian with $\phi_{(x)} = x (x-a)$ yields an energy E_1 . Using a linear combination of two even functions x(x-a) And $x^2(x-a)^2$ we obtain variational minimum to the ground state energy as E_2 . Which of the following relations holds for E_0 , E_1 and E_2 ?

(a)
$$E_0 < E_1 < E_2$$

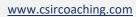
(b)
$$E_0 < E_2 < E_1$$

(c)
$$E_1 < E_0 < E_2$$

(d)
$$E_2 < E_0 < E_1$$

126. The dissociation constant of a weak acid HX at a given temperature is 2.5×10^{-5} . The pH of 0.01 M NaX at this temperature is

127. The ground state energy of hydrogen atom is -13.598 eV. The expectation values of kinetic energy, $\langle T \rangle$ and potential energy, $\langle V \rangle$, in units of eV, are



	$\langle T \rangle$	$\langle \mathbf{V} \rangle$		$\langle \mathbf{T} \rangle$	$\langle \mathbf{V} \rangle$
	(a) 13.598 ,	-27.196	(b)	-27.196	, 13.598
	(c) -6.799 ,	-6.799	(d)	6.799	, -20.397
128.	If $\varphi = 0.8\varphi_A +$	$0.4\phi_B$ is a norm	nalized molecular orb	oital of a dia	atomic molecule
	AB, constructed	from ϕ_A and ϕ_B	which are also norn	nalized, the	overlap between
	ϕ_A and ϕ_B is				
	(a) 0.11	(b) 0.31	(c) 0.5	51	(d) 0.71
129.	At a given tempe	erature consider			
	$Fe_2O_{3(s)} + 3CO$	$O_{(g)} \rightleftharpoons 2Fe_{(s)} + 3C$	$CO_{2(g)}$; $K_1 = 0.05$		
	$2CO_{2(g)} \rightleftharpoons 2CO$	$O_{(g)} + O_{2(g)}$	$K_2 = 2 \times I_{AM}$	10^{-12}	
	The equilibrium	constant for the r	$eaction, 2Fe_2O_{3(s)} \rightleftharpoons$	$4Fe_{(s)} + 30$	2 _(g) is,
	(a) 1×10^{-13}	(b) 2×10^{-38}	(c) 4×10^{-15}		(d) 2×10^{-24}
130.	In a bomb calo	rimeter, the com	bustion of 0.5 g of o	compound-X	(molar mass =
	50 g mol^{-1}) in	creased the temp	perature by 4 K. If	the heat	capacity of the
	calorimeter alon	g with that of the	material is 2.5 kJ K	⁻¹ , the molar	internal energy
	of combustion, in	n kJ, is			
	(a) 1000	(b) -1000	TN 27 0019301(c) 2	0	(d) -20
131.	The translation	al, rotational and	l vibrational partitio	n functions	for a molecule
			$pprox \mathbf{f}_{ ext{vibration}} pprox 1,$		
	temperature, N	$I_{\rm A} \approx 6 \times 10^{23}$. Us	sing the approxima	te data giv	ven above, the
	frequency factor	(A) for a reaction	of the type:		
	atom + dia	atomic molecule	→ non-linear trans	sition state	→ product
	_		sition state theory is		
	(a) 2×10^3	(b) 6×10^7	(c) 2×1		(d) 6×10^{13}
132.	_	spacing of (110)	planes in a cubic uni	t cell with la	attice parameter
	a = 4.242 Å is			0	0
	(a) 5Å	(b) 6Å	()	7.35Å	(d) 3Å
133.			ructure with A atoms		
			e positions. The B ato	oms occupy	four tetrahedral
		s of x and y respec	•		(4)
	(a) 4, 4	(b) 4, 8	(c) 8, 4	•	(d) 4, 2

Tiruchirappalli – 620 024

134. The number of lines in the ESR spectrum of CD_3 is (the spin of D is 1)

ajchemacademy@gmail.com

(d) 7

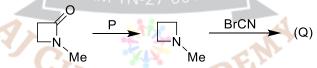
CSIR-UGC-NET (Chemical Science) June-2014

(b) 3

(a) 1

(c) 4

135.	The C=O bond le	ngth is 120 pm i	n CO ₂ . The	moment of inert	ia of CO ₂ would be
	close to,				
	(masses of C and C) are 1.9×10^{-27}	kg and 2. 5	\times 10 ⁻²⁷ kg, resp	ectively)
	(a) $1.8 \times 10^{-45} \text{ kgr}$	n^2		(b) 3.6×10^{-45}	kgm ²
	(c) $5.4 \times 10^{-45} \text{ kgr}$	n^2		(d) 7.2×10^{-45}	kgm ²
136.	The fluorescence l	ifetime of a molec	cule in a solu	ution is 5×10^{-9}	s. The sum of all of
	the non-radiative	rate constants()	Ek _{nr}) for the	he decay of exc	ited state is $1.2 \times$
	$10^8 \mathrm{s}^{-1}$. The fluor	escence quantum	yield of the	molecule is	
	(a) 0.1	(b) 0.2		(c) 0.4	(d) 0.6
137.	Solutions of three	electrolytes have	the same ic	nic strength and	different dielectric
	constants as 4,25	and 81. The cor	responding	relative magnitu	de of Debye-Huckel
	screening, lengths	of the three soluti	ons are		
	(a) 4, 25 and 81	(b) 2, 5 and 9	(c)	1/2, 1/5 and 1/9	(d) 1, 1 and 1
138.	Simple Huckel mo	lecular orbital the	eory	SE X	
	(a) considers electro	on-electron repulsi	on explicitly		
	(b) distinguishes cis	s-butadiene and tra	ns-butadiene	3	
	(c) distinguishes cis	-butadiene and cyc	clobutadiene	301	
	(d) has different cou	alomb integrals for	non-equival	ent carbons	
139.	For the non-dissoc	ciative Langmuir	type adsorp	otion of a gas on	a solid surface at a
	particular temper	ature, the fraction	on of surfa	ce coverage is 0	.6 at 30 bar. The
	Langmuir isothern	n constant (in bar	r ⁻¹ units) at	this temperature	e is
	(a) 0.05	(b) 0.20		(c) 2.0	(d) 5.0
140.	For a set of 10 ob	served data poin	ts, the mean	n is <mark>8</mark> and the va	riance is <mark>0.04.</mark> The
	'standard deviatio	n' and the 'coeffic	cient of vari	ation' of the data	are, respectively
	(a) 0.005, 0.1%	(b) 0.02, 0.2%	% (c	0.20, 2.5%	(d) 0.32, 1.0%
141.	In the Linewea	ver-Burk plot	of (initia	$(1 \text{ rate})^{-1} \text{ vs.}$	(initial substrate
	$concentration)^{-1}$	for an enzyme	catalysed re	eaction following	Michaelis-Menten
	mechanism, the y	-intercept is 500	$0 M^{-1} s. If$	the initial enzy	me concentration is
	1×10^{-9} M, the tu	rnover number is			
	(a) 2.5×10^3	(b) 1.0×10^4		(c) 2.5×10^4	(d) 2.0×10^5
142.	The E⊗E direct pr	oduct in D ₃ point	group cont	ains the irreducil	ole representations
		D_3	E 2C ₃	3C ₂	
Tiruchi	irappalli – 620 024	www.csircoa	aching.com	<u>ajche</u>	macademy@gmail.com


- (a) $A_1 + A_2 + E$
- (b) $2A_1 + E$
- (c) $A_2 + E$
- (d) $2A_1 + 2A_2$

- 143. The result of the product $C_{2(x)}$ $C_{2(y)}$ is
 - (a) E
- (b) σ_{xy}
- (c) $C_2(z)$
- (d) i

- **144.** Given;
 - [P] $Fe(OH)_{2(s)} + 2e^- \rightarrow Fe_{(s)} + 2OH^-_{(aq)}$; $E^0 = -0.877V$
 - [Q] $Al^{3+}_{(aq)} + 3e^{-} \rightarrow Al_{(s)}$; $E^{0} = -1.66V$
 - $\begin{array}{lll} [R] & AgBr_{(aq)} + e^- \rightarrow Ag_{(s)} + Br^- & & \\ \end{array} ; \quad E^0 = 0.071V \\$

The overall reaction for the cells in the direction of spontaneous change would be

- (a) Cell with P and Q: Fe reduced and Cell with P and R: Fe reduced
- (b) Cell with P and Q: Fe reduced and Cell with P and R: Fe oxidized
- (c) Cell with P and Q: Fe oxidized and Cell with P and R: Fe oxidized
- (d) Cell with P and Q: Fe oxidized and Cell with P and R: Fe reduced
- 145. The reagent-P used and the major product-Q formed in the following reaction sequence are:

P

· CN

APP

- (a) LiAlH₄; Br $\stackrel{\sim}{N}$ CN
- (b) LIAIH_4 ,
- (c) NaBH₄ ; Br \sim N
- (d) H₂Pd-C

Answer Key

PART - B

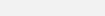
Q.No	Ans
21.	c
22.	a
23.	c
24.	a
25.	a
26.	a
27.	b
28.	b
29.	d
30.	d
31.	a
32.	b
33.	c
34.	a
35.	a

Q.No	Ans	
36.	b	
37.	a	
38.	c	
39.	b	
40.	c	
41.	a	ATE
42.	b	(
43.	a	8
44.	c	X
45.	a	
46.	d	
47.	c	
48.	c	M-TN-27
49.	b	zii,
50.	b	- 7/13

Q.No	Ans	
51.	b	
52.	a	
53.	d	
54.	c	
55.	d	
56.	d	
57.	b	
58.	c	
59.	a	3
60.	a	
	VE	

Q.No	Ans
61.	c
62.	c
63.	d
64.	d
65.	a
66.	c
67.	d
68.	c
69.	b
70.	c

PART - C


Q.No	Ans
71.	b
72.	a
73.	a
74.	c
75.	a
76.	d
77.	d
78.	a

Q.No	Ans
91.	d
92.	b
93.	a
94.	c
95.	c
96.	a
97.	c
98.	b

Q.No	Ans
111.	b
112.	b
113.	d
114.	a
115.	a
116.	a
117.	d
118.	d

Q.No	Ans
131.	b
132.	d
133.	a
134.	d
135.	d
136.	c
137.	b
138.	c

79.	d
80.	a
81.	a
82.	d
83.	a
84.	a
85.	c
86.	a
87.	b
88.	a
89.	a
90.	a

d
d
a
c
d
a
a
d
b
a
a
c

119.	c
120.	b
121.	a
122.	b
123.	c
124.	a
125.	b
126.	c
127.	a
128.	b
129.	b
130.	b
3 1 1	

139.	a
140.	c
141.	d
142.	a
143.	c
144.	b
145.	a

- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.
- © இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜேகெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்புசெய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக் குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப்பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

Tiruchirappalli – 620 024

