AJ Chem Academy

Reg.No: UDYAM-TN-27-0019301

CSIR-UGC-NET (Chemical Science) - June - 2015

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching
- ✓ PG | Polytechnic TRB Chemistry Coaching

www.csircoaching.com

Features

➤ 600 ++ Concept Wise Tests

> 50 ++ Chapter Wise Tests

> 50 ++ Model Tests

2000 ++ Problem Discussions

Recorded Videos

> A Well-Defined Curriculum

> A Strong Subject Foundation

> A Refined Learning Methodology

> Updated Study materials

> Freshers Can easily understand

Question banks

Q.21 - Q.70 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -0.5). You are required to Answer Maximum 35 Questions.

21.	The	biological	functions	of	carbonic	anhydrase	and	carboxypeptidase-A,
	respe	ectively, are						

- (a) interconversion of CO₂ and carbonates and hydrolysis of peptide bond
- (b) gene regulation and interconversion of CO₂ and carbonates
- (c) gene regulation and hydrolysis of peptide bond
- (d) interconversion of CO₂ and carbonates and gene regulation
- The Fe-N_{porphyrin} bond distances in the deoxy- and oxy-haemoglobin, respectively 22. are
 - (a) ~ 2.1 and 2.0 Å
- (b) \sim 2.0 and 2.0 Å
- (c) ~ 2.2 and 2.3 Å
- (d) ~ 2.3 and 2.5 Å
- 23. The binding modes of NO in 18-electron compounds $[Co(CO)_3(NO)]$ and $[Ni(\eta^5-$ (NO), respectively are
 - (a) linear and bent
- (b) bent and linear
- (c) linear and linear
- (d) bent and bent
- 24. The role of copper salt as co-catalyst in Wacker Process is
 - (a) oxidation of Pd(0) by Cu(II)
- (b) oxidation of Pd(0) by Cu(I)
- (c) oxidation of Pd(II) by Cu(I) (d) oxidation of Pd(II) by Cu(II)
- 25. For typical Fischer and Schrock carbenes, consider the following statements
 - Oxidation state of metal is low in Fischer carbene and high in Schrock carbene
 - [Q] Auxiliary ligands are π -acceptor in Fischer carbene and non- π -acceptor in Schrock carbene
 - [R] Substituents on carbene carbon are non- π -donor in Fischer carbene and π donor in Schrock carbene
 - Carbene carbon is electrophilic in Fischer carbene and nucleophilic in Schrock carbene

The correct statements are

- (a) P, Q and R
- (b) P, Q and S
- (c) Q, R and S
- (d) P, R and S
- **26.** The species having the strongest gas phase proton affinity among the following
 - (a) N^{3-}
- (b) NF₃
- (c) NH_3
- (d) $N(CH_3)_3$
- 27. Consider the following statements regarding the diffusion current at dropping mercury electrode,

www.csircoaching.com

ajchemacademy@gmail.com

Ø

[P] It does not depend on mercury flow rate

	[Q] It depends	on drop time		
	[R] It depends	on temperature		
	Correct statem	ent(s) is/are		
	(a) P only	(b) Q only	(c) P and Q	(d) Q and R
28.	Q value for the	ne reaction $^{13}N(n,p)$ ^{13}C	C is 3.236 MeV. The	threshold energy (in
	MeV) for the r	eaction ¹³ C(p,n) ¹³ N is		
	(a) -3.236	(b) -3.485	(c) 3.485	(d) 3.845
29.	The ¹¹⁹ Sn-NM	R chemical shift (appr	oximately in ppm) c	orresponding to (η^5)
	Cp) ₂ Sn (relati	ve to Me ₄ Sn) is		
	(a) -4	(b) + 137	(c) +346	(d) -2200
30.	All forms of ph	osphorus upon melting,	exist as	
	$ \begin{array}{ccc} (a) & n $	CSIA		n
	(c) n(P≡P)	UDYAM-TN-2	(d) P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-	P P
31.	For the oxidati	on state(s) of sulphur ato	oms in <mark>S₂O</mark> , consider th	e following
	P	C. 74	Q	R
	-2 and +4	TEM 0	and +2	+4 and 0
	The correct an	swer(s) is/are		
	(a) P and Q	(b) P and R	(c) Q and R	(d) R only
32.	The correct set	of pseudohalide anions i	s	
	(a) CN^- , ClO_4^- ,	BF_4^- , PF_6^-	(b) N_3^- , NO_3^- , HSO_4^- ,	AsF ₆
	(c) SCN^- , PO_4^{3-}	$, H_2PO_4^-, N_3^-$	(d) $CN^-, N_3^-, SCN^-, 1$	NCN ²⁻
33.	In transition	metal phosphine(M-Pr	3) complexes, the ba	ack-bonding involves
	donation of ele	ctrons from		
	(a) $M_{(t_{2g})} \rightarrow PR$	$h_{3(\sigma^*)}$ (b) $M_{(t_{2g})} \rightarrow PR_3$	(π^*) (c) $M_{(e_g)} \rightarrow P_{(d)}$	(d) $PR_{3(\pi)} \rightarrow M_{(t_{2g})}$
34.	The refluxing of	of RhCl ₃ . 3H ₂ O with an e	excess of PPh ₃ in ethan	nol gives a complex-X
	Complex-X and	d the valence electron co	unt on rhodium are, re	spectively
	(a) [RhCl(PPh ₃) ₃], 16	(b) [RhCl(PPh ₃) ₅],	16

(c) $[RhCl(PPh_3)_3]$, 18

- (d) $[RhCl(PPh_3)_5]$, 18
- 35. The β -hydrogen elimination will be facile in
 - (a) M
- (b) M
- (c) M
- (d) M———H
- 36. The reaction $[Co(CN_5)H_2O]^{2-} + X^- \rightarrow [Co(CN)_5X]^{2-} + H_2O$ follows a/an
 - (a) Interchange dissociative (I_d) mechanism
 - (b) Dissociative (D) mechanism
 - (c) Associative (A) mechanism
 - (d) Interchange Associative (I_a) mechanism
- 37. Correct statement on the effect of addition of aq. HCl on the equilibrium is

- (a) Equilibrium will shift towards right in case of both I and II
- (b) Equilibrium will shift towards left in case of both I and II
- (c) Equilibrium will shift towards right in I and left in case of II
- (d) Equilibrium will shift towards right in II and left in case of I
- 38. The compound that exhibits sharp bands at 3300 and 2150 cm⁻¹ in the IR spectrum is
 - (a) 1-butyne
- (b) 2-butyne
- (c) butyronitrile
- (d) butylamine
- 39. The ¹H-NMR spectrum of a dilute solution of a mixture of acetone and dichloromethane in CDCl₃ exhibits two singlets of 1:1 intensity. Molar ratio of acetone to dichloromethane in the solution is
 - (a) 3:1

- (b) 1:3
- (c) 1:1
- (d) 1 : 2
- 40. Intense band generally observed for a carbonyl group in the IR spectrum is due to
 - (a) The force constant of CO bond is large
 - (b) The force constant of CO bond is small
 - (c) There is no change in dipole moment for CO bond stretching
 - (d) The dipole moment change due to CO bond stretching is large
- 41. The compound that gives precipitate on warming with aqueous AgNO₃ is

42. Following reaction goes through

(a) Free radical intermediate

(b) carbanion intermediate

(c) carbocation intermediate

(d) carbene intermediate

43. The most stable conformation for the following compound is

44. The major product formed in the following reaction is

45. The correct relation between the following compounds is

(a) enantiomers

(b) diastereomers

Tiruchirappalli - 620 024

(c) homomers (identical)

- (d) constitutional isomers
- 46. The correct order of heat of hydrogenation for the following compounds is

- (a) I > II > IV
- (b) I > III > IV
- (c) IV > I > III > II
- (d) IV > II > I > III
- 47. Among the following, the correct statement(s) about ribose is (are)
 - [P] On reduction with NaBH₄ it gives optically inactive product
 - [Q] On reaction with methanolic HCl it gives a furanoside
 - [R] On reaction with Br₂-CaCO₃-water it gives optically inactive product
 - [S] It gives positive Tollen's test
 - (a) P, Q and S
- (b) P, Q and R
- (c) Q and R
- (d) S only
- 48. Biogenetic precursors for the natural product umbelliferone among the following are,

P Q R S

L-tryptophan cinnamic acid L-methionine L-phenylalanine

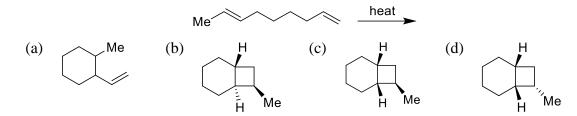
- (a) P and Q
- (b) Q and S
- (c) Q and R
- (d) R and S
- 49. Number of signals in the ¹³C{¹H}-NMR spectrum of (R)-4-methylpentan-2-ol are
 - (a) 3

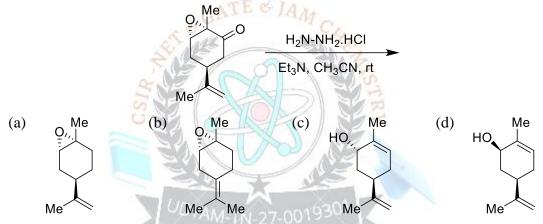
(b) 4

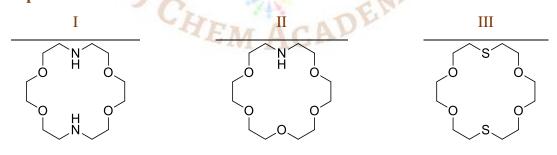
(c) 5

(d) 6

50. The major product formed in the following reaction is



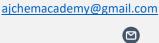



51. The major product formed in the following reaction is

52. The major product formed in the following reaction is

53. The magnitude of the stability constants for K⁺ ion complexes of the following supra-molecular hosts follows the order

- (a) II > I > III (b) III >
- 54. Antitubercular drug(s) among the following is(are)


I	II	III	IV
Salbutamol	Ethambutanol	Isoniazid	Diazepam
(a) I and II	(b) II and III	(c) III and IV	(d) IV Only

55. A particle is in a one-dimensional box with a potential V_0 inside the box and infinite

Tiruchirappalli - 620 024

outside. An energy state corresponding to n = 0 (n : quantum number) is not allowed because

- (a) the total energy becomes zero
- (b) the average momentum becomes zero
- (c) the wave function becomes zero everywhere
- (d) the potential $V_0 \neq 0$
- **56.** An eigen state of energy satisfies $H\Psi_n = E_n\Psi_n$. In the presence of an extra constant potential V₀
 - (a) both E_n and Ψ_n will change
 - (b) both E_n and the average kinetic energy will change
 - (c) only E_n will change, but not Ψ_n
 - (d) only Ψ_n will change, but not E_n
- The intensity of a light beam decreases by 50% when it passes through a sample of 57. 1.0 cm path length. The percentage of transmission of the light passing through the same sample, but of 3.0 cm path length, would be
 - (a) 50.0
- (b) 25.0

- (c) 16.67
- (d) 12.5
- The electric-dipole allowed transition among the following is **58.**
 - (a) ${}^3S \rightarrow {}^3D$
- (b) ${}^3S \rightarrow {}^3P$
- (c) $^3S \rightarrow ^1D$
- (d) ${}^3S \rightarrow {}^1F$
- The product $C_2^x \times \sigma_{xy}$ (C_2^x is the two-fold rotational axis around the x-axis and σ_{xy} is **59.** the xy mirror plane) is
 - (a) σ_{xz}

- (b) σ_{yz} (c) C_2^y

- (d) C_2^z
- **60.** The simplest ground-state VB wave function of a diatomic molecule like HCl is written as $\Psi = \Psi_H (1s, 1) \Psi_{Cl} (3p_z, 2) + B$ where B stands for
 - (a) Ψ_{H} (3p_z, 2) Ψ_{Cl} (1s, 1)

(b) Ψ_{H} (1s, 2) Ψ_{Cl} (3p_z, 1)

(c) Ψ_{Cl} (1s, 2) Ψ_{Cl} (3p_z, 1)

- (d) Ψ_{Cl} (1s, 2) Ψ_{H} (3p_z, 1)
- 61. Heat capacity of a species is independent of temperature if it is
 - (a) tetratomic
- (b) triatomic
- (c) diatomic
- (d) monoatomic
- **62.** In a chemical reaction: $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$, xenon gas is added at constant volume. The equilibrium
 - (a) will shift towards the reactant
 - (b) will shift towards the products
 - (c) will not change the amount of reactant and products

ajchemacademy@gmail.com

Ø

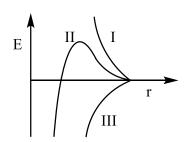
(d) will increase both reactant and products

- The temperature-dependence of a reaction is given by, $k = AT^2 \exp(-E_0/RT)$. **63.** The activation energy (E_a) of the reaction is given by
 - (a) $E_0 + \frac{1}{2} RT$
- (b) E_0
- (c) $E_0 + 2RT$
- (d) $2E_0 + RT$
- For a reaction, $2A + B \rightarrow 3Z$, if the rate of consumption of A is $2 \times$ 64. 10^{-4} mol dm⁻³s⁻¹. the rate of formation of Z (in mol dm⁻³s⁻¹) will be
 - (a) 3×10^{-4}
- (b) 2×10^{-4}
- (c) $4/3 \times 10^{-4}$
- (d) 4×10^{-4}
- Dominant contribution to the escaping tendency of a charged particle with uniform **65.** concentration in a phase, depends On
 - (a) chemical potential of that phase
- (b) electric potential of the phase

- (c) thermal energy of that phase (d) gravitational potential of that phase
- The intrinsic viscosity depends on the molar mass as $[\eta] = KM^a$. The empirical **66.** constants K and a are dependent on
 - (a) solvent only

(b) polymer only

(c) polymer-solvent pair


- (d) polymer-polymer interaction
- The correct ΔG for the cell reaction involving steps $\mathbf{Zn}_{(s)} \to \mathbf{Zn^{2+}}_{(aq)} + \mathbf{2e^{-}}$ and **67.** $\text{Cu}^{2+}{}_{(aq)} + 2e^- \rightarrow \text{Cu}_{(s)}$ is

- (a) $\Delta G^{\circ} RT \ln \frac{a_{Zn^{2+}}}{a_{Cu^{2+}}}$ (b) $\Delta G^{\circ} + RT \ln \frac{a_{Zn^{2+}}}{a_{Cu(s)}}$ (c) $\Delta G^{\circ} RT \ln \frac{a_{Zn^{2+}}}{a_{Cu^{2+}}}$ (d) $\Delta G^{\circ} + RT \ln \frac{a_{Zn^{2+}}}{a_{Cu^{2+}}}$
- The lowest energy-state of an atom with electronic configuration ns¹np¹ has the **68.** term symbol
 - (a) ${}^{3}P_{1}$

(b) ${}^{1}P_{1}$

(c) ${}^{3}P_{2}$

- (d) ${}^{3}P_{0}$
- Energy of interaction of colloidal particles as a function of distance of separation **69.** can be identified as (P) van der Waals, (Q) double laver, (R) van der Waals and double layer. The correct order of interactions in the figure corresponding to curves (I), (II) and (III) respectively, is

- (a) P, Q, R
- (b) Q, R, P
- (c) R, P, Q
- (d) P, R, Q

Ø

Q

	CSI	n-uge-net (chemica	1 50	eience) June -	2010
70.	•	packing factor (PF) and number	of at	omic sites per unit o	cell (N) of an FCC
	•	F = 0.52 and $N = 3$		(b) $PF = 0.74$	and $N = 3$
	` /	F = 0.52 and $N = 4$		(d) $PF = 0.74$	
	` ′	- Q.145 Multiple Choice G)1168	. ,	
	_	(for each wrong answer:	_		
		•). Tou are requi	ired to Allswer
71		imum 25 Questions.	•		D.C. D.L.
71.		rential pulse polarography(DPP)		iore sensitive than	D.C. Polarography
). Consider following reasons for			
		on-faradic current is less in DPP i	TA		
		Non-faradic current is more in DPI		C	
	[R] P	olarogram of DPP is of different s	hape	than that of DCP	
	Corr	ect reason(s) is/are		200	
	(a) P	and R (b) Q and R		(c) Q only	(d) P only
72.	Cons	idering the following parameter	s wi	th reference to the	fluorescence of a
	solut	ion:	S	105	
	[P] M	Iolar absorptivity of fluorescent m	olecu	ıle	
	[Q] I	ntensity of light source used for ex	citati	ion 301	
	[R] D	Dissolved oxygen	/-00	A STATE OF THE PARTY OF THE PAR	
	The o	correct answer for the enhanceme	ent of	fluorescence with th	ne increase in these
	•	and Q (b) Q and R	1C	(c) P and R	(d) R only
73.	, ,	geometric cross section of ¹²⁵ Sn (in			(u) It omy
,	(a) 1.			•	d) 1.93
74.	, ,	h column-I (coupling reactions) w	`		a) 1.75
/ =f0	Marc	Column-I	1011	Column-II	
	P.		i.		
		Suzuki coupling		H ₂ C=CHCO ₂ CH ₃	
	Q.	Heck coupling	ii	$RB(OH)_2$	

Р.	Suzuki coupling	i.	H ₂ C=CHCO ₂ CH ₃
Q.	Heck coupling	ii	$RB(OH)_2$
R.	Sonogashira coupling	iii.	$PhCO(CH_2)_3ZnI$
S.	Negeshi Coupling	iv.	HC≡CR
		v.	SnR ₄
	l		

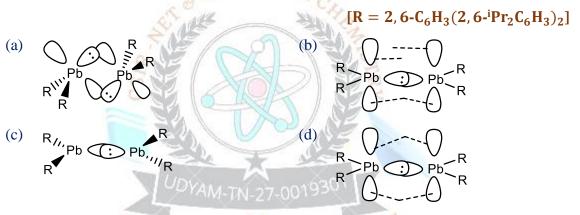
The correct match is

P Q R S

P

Q

R S



; i (a) ii ; iv ; iii (b) i ; iii ; iv (d) ii ; iii ; iv (c) iv ; iii ; i ; ii

The oxoacid of phosphorus having P atoms in +4, +3 and +4 oxidation states *75.* respectively, is

(c) $H_5P_3O_8$ (a) $H_5P_3O_{10}$ (b) $H_5P_3O_7$ (d) $H_5P_3O_9$

- The geometries of $[Br_3]^+$ and $[I_5]^+$ respectively, are **76.**
 - (a) trigonal and tetrahedral (b) tetrahedral and trigonal bipyramidal
- (c) tetrahedral and tetrahedral (d) linear and trigonal pyramidal
- According to Wade's theory the anion $[B_{12}H_{12}]^{2-}$ adopts______ structure 77. (b) arachno (c) hypo (d) nido (a) closo
- **78.** Considering the inert pair effect on lead, the most probable structure of PbR₂ is,

- **79.** The reaction of SbCl₃ with 3 equivalents of EtMgBr yields compound X. Two equivalents of SbI₃ react with one equivalent of X to give Y. In the solid state, Y has a 1D-polymeric structure in which each Sb is in a square pyramidal environment. Compounds X and Y respectively, are
 - (a) SbEt₃ and $[Sb(Et)I_2]_n$ (b) $Sb(Et_2)Cl$ and $[Sb(Et_2)Cl]_n$ (d) $Sb(Et)Br_2$ and $[SbEt(I)(Br)]_n$ (c) SbEt₃ and $[SbEt_2Br_2]_n$
- **80.** Match the complexes given in column-I with the electronic transitions (mainly responsible for their colours) listed in column II

	Column-I		Column-II
(P)	Fe(II)-protoporphyrin IX	(i)	$\pi \to \pi^*$
(Q)	$[Mn(H_20)_6]Cl_2$	(ii)	$spin \ allowed \ d \rightarrow d$
(R)	$[\text{Co}(\text{H}_2\text{O})_6]\text{Cl}_2$	(iii)	$spin \ forbidden \ d \rightarrow d$
		(iv)	$M \rightarrow L$ charge transfer
The c	orrect answer is		!

0

ajchemacademy@gmail.com

	P		Q		R		P		Q		
(a)	i	;	iii	;	ii	(b)	iv	;	ii	;	
(c)	i	;	iii	;	iv	(d)	i	;	ii	;	

- **81.** The following statements are given regarding the agostic interaction C—H...Ir observed in [Ir(Ph₃P)₃Cl].
 - [P] Upfield shift of C-H proton in ¹H-NMR spectrum
 - [Q] Increased acid character of C-H
 - [R] v_{C-H} in IR spectrum shifts to higher wavenumber

The correct answer is/are

- (a) P and R (b) Q and R (c) P and Q (d) R only **Amongst the following:**
- **82.**

$$\begin{array}{c|cccc} P & Q & R & S \\ \hline \hline [Mn(\eta^5\text{-Cp}) (CO)_3] & [Os(\eta^5\text{-Cp})_2] & \hline [Ru(\eta^5\text{-Cp})_2] & \hline \end{array}$$

the compounds with most shielded and deshielded Cp protons respectively, are

- (b) S and Q
- (c) R and P
- Total number of vertices in metal clusters $[Ru_6(C)(CO)_{17}]$, $[Os_5(C)(CO)_{15}]$ and 83. $[Ru_5(C)(CO)_{16}]$ are 6,5 and 5 respectively. The predicted structures of these complexes, respectively, are AM-TN-27-001930
 - (a) closo, nido and nido

(b) closo, nido and arachno

(c) arachno, closo and nido

(d) arachno, nido and closo

Among the complexes, 84.

P	Q	R	S			
$K_4[Cr(CN)_6]$	$K_4[Fe(CN)_6]$	$K_3[Co(CN)_6]$	$K_4[Mn(CN)_6]$			
Jahn-Teller distor	tion is expected in					
(a) P, Q and R	(b) Q, R and S	(c) P and S	(d) Q and R			

The reductive elimination of Ar-R (coupled product) from X is facile when, **85.**

- (a) $R = CH_3$
- (b) $R = CH_2Ph$
- (c) $R = CH_2COPh$ (d) $R = CH_2CF_3$
- 86. The total number of metal ions and the number of coordinated imidazole units of histidine in the active site of oxy-hemocyanin, respectively, are

O

ajchemacademy@gmail.com

- (a) $2Cu^{2+}$ and 6
- (b) 2Fe²⁺ and 5
- (c) 2Cu⁺ and 6
- (d) Fe^{2+} and 3
- Match the action of H₂O₂ in aqueous medium given in column-I with the **87.** oxidation/ reduction listed in column-II

Action of H₂O₂

Type of reaction

Р.	Oxidation in acid (i)	$[Fe(CN)_6]^{3-} \rightarrow [Fe(CN)_6]^{4-}$
Q.	Oxidation in base (ii)	$[Fe(CN)_6]^4 \rightarrow [Fe(CN)_6]^3$
R.	Reduction in acid (iii)	$\begin{aligned} & [Fe(CN)_6]^{3-} \rightarrow [Fe(CN)_6]^{4-} \\ & [Fe(CN)_6]^4 \rightarrow [Fe(CN)_6]^3 \\ & MnO_4 \rightarrow Mn^{2+} \end{aligned}$
S.	Reduction in base (iv)	$Mn^{2+} \rightarrow Mn^{4+}$

The correct answer is

	P		Q		R	S	P		Q		R		S	
(a)	i	;	ii	;	iii	; iv	(b) ii	;	iv	;	iii	;	i	_
(c)	iii	;	iv	;	ii	Si il	(d) iv	;	i	•	iii	;	ii	

- **88.** The reduced form of a metal ion M in a complex is NMR active. On oxidation, the complex gives an EPR signal with $g_{\parallel} \approx 2.2$ and $g_{\perp} \approx 2.0$. Mossbauer spectroscopy cannot characterise the metal complex. The M is,
 - (a) Zn
- (b) Sn

(c) Cu

- (d) Fe
- 89. The least probable product from given compound on reductive elimination is

(a)
$$H_3C$$
 CH_3 (b) CH_4 (c) H_3C CH_3 (d) CH_3 H_3C CH_3

90. Water plays different roles in the following reactions

$$\begin{split} & \textbf{[P] 2H}_2\textbf{0} + \textbf{Ca} \longrightarrow \textbf{Ca}^{2+} + \textbf{20H}^- + \textbf{H}_2 \\ & \textbf{[Q] nH}_2\textbf{0} + \textbf{Cl} \longrightarrow [\textbf{Cl}(\textbf{H}_2\textbf{0})_n]^- \end{split}$$

$$\text{[R] } 6\text{H}_2\text{O} + \text{Mg}^{2+} \rightarrow [\text{Mg}(\text{H}_2\text{O})_6]^{2-}$$

$$\textbf{[S] } 2\text{H}_2\text{O} + 2\text{F}_2 \longrightarrow 4\text{HF} + \text{O}_2$$

The correct role of water in each reaction is

	P	Q	R	S
(a)	oxidant	; acid	; base	; reductant
(b)	oxidant	; base	; acid	; reductant
(c)	acid	; oxidant	; reductant	; base

0

Ø

- (d) ; reductant ; oxidant base ; base
- 91. With respect to σ and π bonding in Pt—||| in the structure given below, which of the following represent the correct bonding?

- (a) $M(\sigma) \to L(\sigma)$ and $M(\pi) \to L(\pi *)$ (b) $L(\sigma) \to M(\pi)$ and $L(\pi) \to M(\pi)$
- $(c) \ L(\pi) \to M(\pi) \ \text{and} \ L(\sigma) \to M(\pi) \qquad \qquad (d) \ L(\pi) \to M(\sigma) \ \text{and} \ M(\pi) \to L(\pi \, *)$
- **92.** The complex $[Fe(Phen)_2(NCS)_2]$, (phen = 1, 10-phenanthroline) shows spin cross-over behaviour. CFSE and μ_{eff} at 250 and 150 K respectively, are:
 - (a) $0.4 \Delta_0$, 4.90 BM and $2.4 \Delta_0$, 0.00 BM
 - (b) 2.4 Δ_0 , 2.90 BM and 0.4 Δ_0 , 1.77 BM
 - (c) $2.4 \Delta_0$, 0.00 BM and $0.4 \Delta_0$, 4.90 BM
 - (d) 1.2 Δ_0 , 4.90 BM and 2.4 Δ_0 , 0.00 BM
- **93.** Consider the following statements with respect to uranium
 - [P] UO_2^+ disproportionates more easily than UO_2^{2+}
 - [Q] U₃O₈ is its most stable oxide of U
 - [R] Coordination number of U in $[UO_2(NO_3)_2(H_2O)_2]$. $4H_2O$ is six
 - [S] UO₂²⁺ is linear

The correct set of statements is

- (a) P, Q and S
- (b) P, R and S
- (d) P, Q and R

94.

2 Et — Et + CO
$$\frac{(R_3P)_2Ni(1,5- \text{ cyclooctadiene})}{Et}$$

For the above conversion, which of the following statements are correct?

- [P] CO₂ combines with Ni(PR₃)₂ (1, 5-cyclo- octadiene)
- [Q] Insertion of CO₂ occurs
- [R] Insertion of Et———Et takes place

The correct answer is

- (a) P and Q
- (b) Q and R
- (c) P and R
- (d) P, Q and R
- **95.** Consider the following statements for $Z = (NH_4)_2 [Ce(NO_3)_6]$
 - [P] Coordination number of Ce is 12

- [Q] Z is paramagnetic
- [R] Z is an oxidising agent
- [S] Reaction with Ph₃PO gives a complex having coordination number 10 for Ce

The correct statements are

- (a) P, Q and R
- (b) P, Q and S
- (c) Q, R and S
- (d) P, R and S
- 96. The major product formed in the following reaction sequence is

$$HO_2C \longrightarrow H$$

97. The major products P and Q in the following reaction sequence are

$$P \xrightarrow{R = OH} \begin{array}{c} R = Me \\ \hline NaNH_2 \\ liq. NH_3 \end{array} \xrightarrow{R} \begin{array}{c} R = Me \\ \hline NaNH_2 \\ liq. NH_3 \end{array}$$

$$Q$$

$$H_2$$
 H_2
 H_2
 H_2
 H_2

Tiruchirappalli - 620 024

(c)
$$OH$$
 OH OH Me Me He NH_2 NH_2 NH_2 NH_2 NH_2 Me NH_2 Me NH_2 Me NH_2 NH_2 NH_2 NH_2

98. The major product formed in the following reaction is

99. The major products P and Q in the following reaction sequence are

100. The major products formed in the following reaction are

$$\begin{array}{c} \text{O.5 equiv. PhC(Me)}_2\text{OOH} \\ \text{1.0 equiv. Ti(O}^{\text{i}}\text{Pr})_4 \\ \hline \text{1.2 equiv. (-)-DIPT} \\ \text{CH}_2\text{Cl}_2, -20 \,^{\circ}\text{C} \\ \end{array}$$

101. The correct statement about the following reaction is

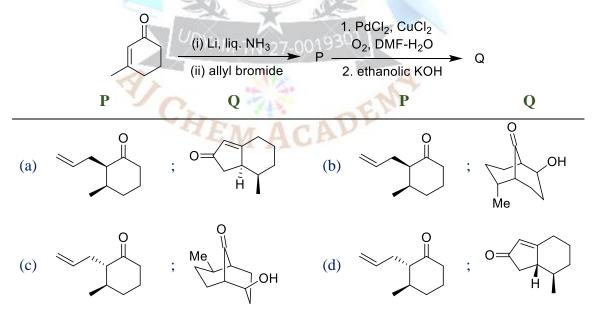
- (a) The product is 2-fluoropyridin-3-amine and reaction involves nitrene intermediate
- (b) The product is 2-fluoropyridin-3-amine and reaction involves radical intermediate
- (c) The product is 2-hydroxynicotinamide and reaction involves benzyne-like intermediate
- (d) The product is 2-hydroxynicotinamide and reaction involves addition-elimination mechanism

102. The major product formed in the following reaction is

$$(a) \quad Ph \qquad (b) \qquad H \qquad Ph$$

$$(c) \quad H \qquad Ph \qquad (d) \quad HO \qquad Ac$$

103. The major products P and Q formed in the following reactions are



Tiruchirappalli - 620 024

104. The major products P and Q formed in the following reactions are

105. An organic compound shows following spectral data:

 $IR (cm^{-1}) : 1680$

 $^{1}\text{H-NMR}$: 7.66 (m, 1H), 7.60 (m, 1H), 7.10 (m, 1H), 2.50 (s, 3H)

¹³C-NMR : 190, 144, 134, 132, 128, 28

 $m/z \, (EI) \qquad : \ \, 126 \, (M^+, 100\%), 128 \, ([M^+ + 2], 4.9\%)$

The structure of the compound is

- (a) OA
- (b) O
- (c) CO₂Me
- (d) S
- 106. The correct set of reagents to effect the following transformation is

(a) (i) NaOMe, Mel

- (b) (i) NaOMe, Mel
- (ii) NaCl, wet DMSO, 160 °C
- (ii) aq. NaOH then HCl, heat

- (iii) LDA, -78 °C, TMSCl
- (iii) Et₃N, TMSCl, rt

(iv) t-BuCl, TiCl₄, 50 °C

(iv) t-BuCl, TiCl₄, 50 °C

(c) (i) LDA, t-BuCl

(d) (i) NaCl, wet DMSO, 160 °C

(ii) LDA, MeI

- (ii) NaH, t-BuCl
- (iii) aq. NaOH then HCl, heat
- (iii) morpholine, H⁺
- (iv) MeI then H₃0⁺
- 107. The correct structures of the intermediates [P] and [Q] in the following reaction are

$$\begin{array}{c|c}
 & POCI_3 \\
\hline
 & POCI_3
\end{array}$$

$$\begin{array}{c|c}
 & Ph & NH_2 \\
\hline
 & N & Ph \\
\hline
 & H & Ph
\end{array}$$

 $(a) \begin{array}{c} & & \\ &$

- (b) NO P(O)Cl₂
- ; CI P(O)Cl₂

Q

- (c) $\bigcap_{N} \bigcap_{OP(O)Cl_2} \bigcap_{N} \bigcap_{OP(O)Cl_2} \bigcap_{N} \bigcap_{OP(O)Cl_2} \bigcap_{N} \bigcap_{OP(O)Cl_2} \bigcap_{OP(O)Cl_2} \bigcap_{N} \bigcap_{OP(O)Cl_2} \bigcap_{OP(O)$
- $(d) \bigvee_{P(O)Cl_2}$
- ⊕ CI CI N P CI
- 108. The correct reagent combination-X and the major product-Y in the following reaction sequence are

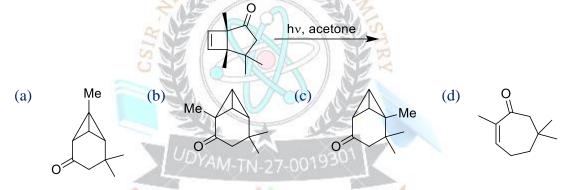
0

(a) LiHMDS, AcCl ;
$$EtO_2C$$

(b) n-BuLi, AcCl EtO₂C

(d) n-BuLi, AcOEt;

The major product of the following reaction sequence is


The major product formed in the following reaction is

111. The major products P and Q in the following synthetic sequence are

112. The major product formed in the following reaction is

113. The hydrocarbon among the following having conformationally locked chair-boat-chair form is,

114. The major product formed in the following reaction sequence is

The major product in the following reaction sequence is

116. Structures of P and Q in the following synthetic sequence are

AcO
$$\stackrel{\bullet}{N}$$
 CHO $\stackrel{\bullet}{2}$. P $\stackrel{\bullet}{O}$ Q $\stackrel{\bullet}{O}$ P $\stackrel{\bullet}{O}$ Q $\stackrel{\bullet}{O}$ (i) LiAlH₄ Q $\stackrel{\bullet}{O}$ (ii) H₃O⁺ Q $\stackrel{\bullet}{O}$ (iii) H₃O⁺ Q $\stackrel{\bullet}{O}$ (iii) H₃O⁺ $\stackrel{\bullet}{O}$ $\stackrel{\bullet}{O}$

Me

Me.

$$(d) \qquad \begin{matrix} H \\ N \end{matrix} CO_2 Me \qquad ; \qquad \begin{matrix} H \\ N \end{matrix} CH_2 OH \end{matrix}$$

117. In the following reaction, the ratio of P : Q : R is (* indicates labelled carbon)

*
$$AIBN$$
 CCl_4
heat
 P
 Q
 R

- (a) 1:1:1
- (b) 1:2:1
- (c) 2:1:1
- (d) 3:2:1
- 118. Structure of the major product in the following synthetic sequence is

119. Major product formed in the following synthetic sequence on the monoterpene pulegone is

(a)
$$\begin{array}{c} 1. \text{ Br}_2 \\ \hline 2. \text{ NaOEt, EtOH} \\ \hline 3. \text{ KOH, EtOH} \\ \end{array}$$

120. Optically pure isomers P and Q were heated with NaN₃ in DMF. The correct statement from the following is

$$NMe_2$$
 NMe_2
 NMe_2
 NMe_2
 NMe_3
 NMe_3

0

NMe₂

S

CSIR-UGC-NET (Chemical Science) June - 2015

R

(a) P gives optically pure S and Q gives optically pure R (b) P gives racemic mixture of R and Q gives optically pure R (c) P gives optically pure R and Q gives racemic R (d) P gives optically pure S and Q gives racemic S A molecular orbital of a diatomic molecule changes sign when it is rotated by 180° around the molecular axis. This orbital is (a) σ (b) π (c) δ (d) **122.** IR active normal modes of methane belong to the irreducible representation T_d \mathbf{E} $8C_3$ $3C_2$ **6S**₄ $6\sigma_d$ $\mathbf{A_1}$ 1 1 1 ALL T JAMI 1 $\mathbf{A_2}$ 1 -1 $\mathbf{0}$ $\mathbf{2z}^2 - \mathbf{x}^2 - \mathbf{y}^2$, $\mathbf{x}^2 - \mathbf{y}^2$ \mathbf{E} 2 T_1 3 -1 x, y, z, xy, yz, zx T_2 (a) $E + A_1$ (b) $E + A_2$ (d) T_2 The symmetric rotor among the following is **123.** (b) CH₃Cl (c) CH₂Cl₂ (a) CH₄ (d) CCl₄ The nuclear g-factors of ¹H and ¹⁴N are 5.6 and 0.40 respectively. If the magnetic **124.** field in an NMR spectrometer is set such that the proton resonates at 700 MHz, the ¹⁴N nucleus would resonate at (c) 125 MHz (a) 1750 MHz (b) 700 MHz (d) 50 MHz The spectroscopic technique, by which the ground state dissociation energies of 125. diatomic molecules can be estimated is (a) microwave spectroscopy (b) infrared spectroscopy (c) UV-visible absorption spectroscopy (d) X-ray spectroscopy **126.** The term symbol for the first excited state of Be with the electronic configuration $1s^{1}2s^{1}3s^{1}$ is (a) ${}^{3}S_{1}$ (b) ${}^{3}S_{0}$ (c) ${}^{1}S_{0}$ (d) ${}^{2}S_{1/2}$ 127. Which of the following statements is **INCORRECT**? (a) A Slater determinant is an anti-symmetrized wavefunction (b) Electronic wavefunction should be represented by Slater determinants (c) A Slater determinant always corresponds to a particular spin state

0

- (d) A Slater determinant obeys the Pauli exclusion principle
- 128. Compare the difference of energies of the first excited and ground states of a particle confined in

Assume the length of each of the boxes is the same. The correct relation between the energy differences Δ_1 , Δ_2 and Δ_3 for the three cases is

(a)
$$\Delta_1 > \Delta_2 > \Delta_3$$

(b)
$$\Delta_1 = \Delta_2 = \Delta_3$$

(c)
$$\Delta_3 > \Delta_2 > \Delta_1$$

(d)
$$\Delta_3 > \Delta_1 > \Delta_2$$

The correct statement about both the average value of position (x) and momentum($\langle p \rangle$) of a 1-d harmonic oscillator wavefunction is

(a)
$$\langle x \rangle \neq 0$$
 and $\langle p \rangle \neq 0$

(b)
$$\langle x \rangle = 0$$
 but $\langle p \rangle \neq 0$

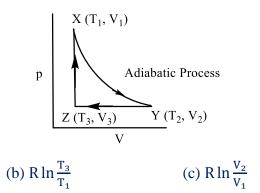
(c)
$$\langle x \rangle = 0$$
 and $\langle p \rangle = 0$

(d)
$$\langle x \rangle \neq 0$$
 but $\langle p \rangle = 0$

130. The value of the commutator $[x, [x, p_x]]$ is

$$(b) -i\hbar$$

The equilibrium constants for the reactions $CH_{4(g)} + 2H_2O_{(g)} \rightleftharpoons CO_{2(g)} + 4H_{2(g)}$ and $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$ are K_1 and K_2 , respectively. The equilibrium constant for the reaction $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + 3H_{2(g)}$ is


(a)
$$K_1$$
. K_2

(b)
$$K_1 - K_2$$
 (c) K_1/K_2

(c)
$$K_1/K_2$$

(d)
$$K_2 - K_1$$

Consider the progress of a system along the path shown in the figure. $\Delta S_{(Y \to Z)}$ for 132. one mole of an ideal gas is then given by

(a)
$$R \ln \frac{T_1}{T_3}$$

(b)
$$R \ln \frac{T_3}{T_1}$$

(c) R
$$\ln \frac{V_2}{V_1}$$

(d)
$$R \ln \frac{V_1}{V_2}$$

- 133. A thermodynamic equation that relates the chemical potential to the composition of a mixture is known as
 - (a) Gibbs-Helmholtz equation

(b) Gibbs-Duhem equation

(c) Joule-Thomson equation

(d) Debye-Huckel equation

Tiruchirappalli – 620 024

134.				_	lependence of pre-
	that forms products through a non-linear transition state, is given by				
	(a) T	(b) T ²		(c) T^{-2}	(d) $T^{-1.5}$
135.	For a given ion	ic strength (I), ra	nte of reaction	is given by $\log \frac{k}{k}$	$\frac{1}{100} = -4 \times 0.51(I)^{1/2}$.
		ollowing reactions			U
	(a) $S_2O_8^2 + I^-$			(b) Co(NH ₃) ₅	$3Br^{2+} + OH^{-}$
	(c) CH ₃ COOC ₂ H	I ₅ + OH ⁻		$(d) H^+ + Br +$	$-H_2O_2$
136.	For a reaction	on a surface			
		H ₂ + -	S-S-	H H -S-S-	
			slow	H -S-S- + H	
	At low pressur	e of H ₂ , the rate is	s proportional	- C	
	(a) [H ₂]	(b) $1/[H_2]$		(c) $[H_2]^{1/2}$	(d) $1/[H_2]^{1/2}$
137.		re-dependence of	THE STATE OF	//	
137.	(a) ΔG/nFT	(b) ΔH/nF) ΔS/nF	(d) ΔS/nFT
138.	•				n has the form $f =$
1000		J - STAN	1-TN-27-001	SPERMIN	oltzman constant)
	(a) BkT	(b) BkT ²	.21/2.	(c) kT/B	$(d) kT/B^2$
139.	` '		on in the Bolt		•
10)(the following w	av:	MAG		on is incorporated in
	J	ber of particles;	f = single-par	rticle partition fu	nction)
	(a) Replace f by			(b) Replace f ^N by	
	(c) Replace f by	f/ln(N!)		(d) Replace f ^N by	•
140.	In a photochen	nical reaction, rac	licals are forn	ned according to	the equation
			. k	l	
		C ₄ H ₁₀	+ hv = k_	2C ₂ H ₅	
		C_2H_5 +	$C_2H_5 \xrightarrow{ k_2 }$	$C_2H_6 + C_2H_4$	
	If I is the inten	sity of light absor	rbed, the rate	of the overall rea	nction is proportional
	to				
	(a) I	(b) $I^{1/2}$	(c) I[($[C_4H_{10}]$	(d) $I^{1/2}[C_4H_{10}]^{1/2}$
141.	Conductometr	ic titration of a st	trong acid wit	th a strong alkali	(MOH) shows linear

fall of conductance up to neutralization point because of

- (a) formation of water
- (b) increase in alkali concentration
- (c) faster moving H⁺ being replaced by slower moving M⁺
- (d) neutralization of acid
- 142. Find the probability of the link in polymers where average values of links are

I	
 10	

II	
50	

1100

Ш

	1		Ш		Ш
(a)	0.99	;	0.98	;	0.90

(b) 0.98 ; 0.90 ; 0.99

II

I

(c) 0.90 ; 0.98 ; 0.99

(d) 0.90 ; 0.99 ; 0.98

- 143. The stability of a lyophobic colloid is the consequence of
 - (a) van der Waals attraction among the solute-solvent adducts
 - (b) Brownian motion of the colloidal particles
 - (c) insolubility of colloidal particles in solvent
 - (d) electrostatic repulsion among double-layered colloidal particles
- 144. In a conductometric experiment for estimation of acid dissociation constant of acetic acid, the following values were obtained in four sets of measurements:

$$1.71 \times 10^{-5}$$
, 1.77×10^{-5} , 1.79×10^{-5} and 1.73×10^{-5}

The standard deviation of the data would be in the range of

(a)
$$0.010 \times 10^{-5} - 0.019 \times 10^{-5}$$

(b)
$$0.020 \times 10^{-5} - 0.029 \times 10^{-5}$$

(c)
$$0.030 \times 10^{-5} - 0.039 \times 10^{-5}$$

(d)
$$0.040 \times 10^{-5} - 0.049 \times 10^{-5}$$

- 145. Silver crystallizes in face-centered cubic structure. The 2^{nd} order diffraction angle of a beam of X-ray ($\lambda = 1\text{Å}$) of (111) plane of the crystal is 30°. Therefore, the unit cell length(a) of the crystal would be
 - (a) 3.151 Å
- (b) 3.273 Å
- (c) 3.034 Å
- (d) 3.464 Å

Answer Key

$\underline{Part - B}$

Q.No	Ans
21.	a
22.	a
23.	c
24.	a
25.	b
26.	a
27.	d
28.	c
29.	d
30.	a
31.	a
32.	d
33.	a
34.	a
35.	a

Q.No	Ans	
36.	*	
37.	a	
38.	a	
39.	b	
40.	d	. 11
41.	c	EGJ
42.	a	(8)
43.	a	
44.	d	
45.	c	
46.	b	X
47.	a	N-27-
48.	b	SAN.
49.	d	IA
50.	d	

Q.No	Ans
51.	a
52.	c
53.	a
54.	b
55.	c
56.	c
57.	d
58.	b
59.	a
60.	b
Out of	4 100

Q.No	Ans
61.	d
62.	c
63.	c
64.	a
65.	b
66.	c
67.	d
68.	d
69.	b
70.	d

$\underline{Part - C}$

Q.No	Ans
71.	d
72.	a
73.	b
74.	a
75.	c
76.	b

Q.No	Ans
91.	d
92.	a
93.	a
94.	b
95.	d
96.	c

Q.No	Ans
111.	a
112.	a
113.	d
114.	c
115.	d
116.	b

Q.No	Ans
131.	С
132.	*
133.	b
134.	d
135.	b
136.	c

77.	a
78.	a
79.	a
80.	a
81.	С
82.	a
83.	b
84.	c
85.	a
86.	a
87.	b
88.	С
89.	С
90.	a
82. 83. 84. 85. 86. 87. 88.	a b c a b c c c c c c

97.	a
98.	c
99.	c
100.	a
101.	a
102.	b
103.	b
104.	d
105.	d
106.	a
107.	c
108.	a
109.	d
110	c

c
a
b
b
b
d
b
d
b
a
c
b
c
d

137.	С
138.	b
139.	b
140.	a
141.	С
142.	c
143.	d
144.	c
145	d

- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.
- © இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜேகெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்புசெய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக் குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப்பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

ajchemacademy@gmail.com