

GATE – 2003 – Chemistry

www.csircoaching.com

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ University Chemistry Entrance (PhD | PG)
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching

Features						
\succ 300 ++ Live Classes	A Well-Defined Curriculum					
\succ 200 ++ Concept Wise Tests	A Strong Subject Foundation					
\succ 50 ++ Chapter Wise Tests	> A Refined Learning Methodology					
\succ 50 ++ Model Tests	Updated Study materials					
\succ 2000 ++ Problem Discussions	Freshers Can easily understand					
Recorded Videos	Question banks					

	Q.1 – Q.30 Multiple Choice Question	on (MCQ), c	earry	0]	NE	mar	k e	<u>ach</u>
	<u>(for each wrong answer: – 1/3).</u>							
1.	Adiabatic reversible expansion of a monoa	tomic gas (M)	and	a di	ator	nic g	as (I	D) at
	an initial temperature $\mathbf{T}_{\mathbf{i}}$, has been carried out independently from initial volume \mathbf{V}_{1}							
	to final volume V ₂ . The final temperature	attained will b	e (T _M	for	mo	noato	omic	and
	T _D for diatomic)							
	(a) $T_M = T_D > T_i$		(b)					
	(c) $T_M > T_D > T_i$		(d)	T _D	<	T_{M}	<	T_i
2.	The rate of evaporation of a liquid is alway	s faster at a hig	gher t	temp	oerat	ture k	oeca	use
	(a) The enthalpy of vaporisation is always end	lothermic						
	(b) The enthalpy of vaporisation is always exc	othermic						
	(c) The enthalpy of vaporisation is zero	State .						
	(d) The internal pressure of the liquid is less the	han that of the g	gas					
3.	The internal pressure of a Vander Waals ga	as is:						
	(a) Independent of the molar volume		i					
	(b) Inversely proportional to the molar volume							
	(c) Inversely proportional to square of the mol	ar volume						
	(d) Directly proportional to the molar volume.	1012						
4.	In a consecutive first order reaction, A –	$\xrightarrow{k_1} B$	A	k ₂	\longrightarrow	C (w	her	e k ₁
	and k ₂ are the respective rate constant	nts) species-B	has	tra	nsie	ent e	xiste	ence.
	Therefore,	CADE						
	(a) $k_1 \approx k_2$ (b) $k_1 = 2k_2$	(c) $k_1 \gg$	k_2			(d) k	$x_1 \ll$	k ₂
5.	For a free radical polymerisation reaction,	the kinetic cha	ain le	ngth	ι 'γ'	, is d	efine	ed as
	the ratio							
	(a) $\frac{\text{propagation rate}}{\text{initiation rate}}$ (b) $\frac{\text{initiation rate}}{\text{propagation rate}}$	(c) $\frac{\text{initiation}}{\text{termination}}$	rate n rate		(d)	propag termir	gatio natio	n rate n rate
6.	The reaction that proceeds autocatalytically	y is						
	(a) an oscillatory reaction	(b) hydrolysis	of an	este	r by	a min	eral	acid
	(c) synthesis of ammonia (Haber's process)	(d) Ziegler-Na	tta pol	lyme	eriza	tion		
7.	An example for an ion-selective electrode is							
	(a) quinhydrone electrode	(b) hydrogen e	electro	ode				
	(c) glass electrode	(d) dropping n		-				
8.	The following equilibrium is established for	an aqueous a	cetic a	acid	solu	tion		

1

Upon addition of 1.0 g of solid sodium chloride to 20 ml of 1N solution of acetic acid,

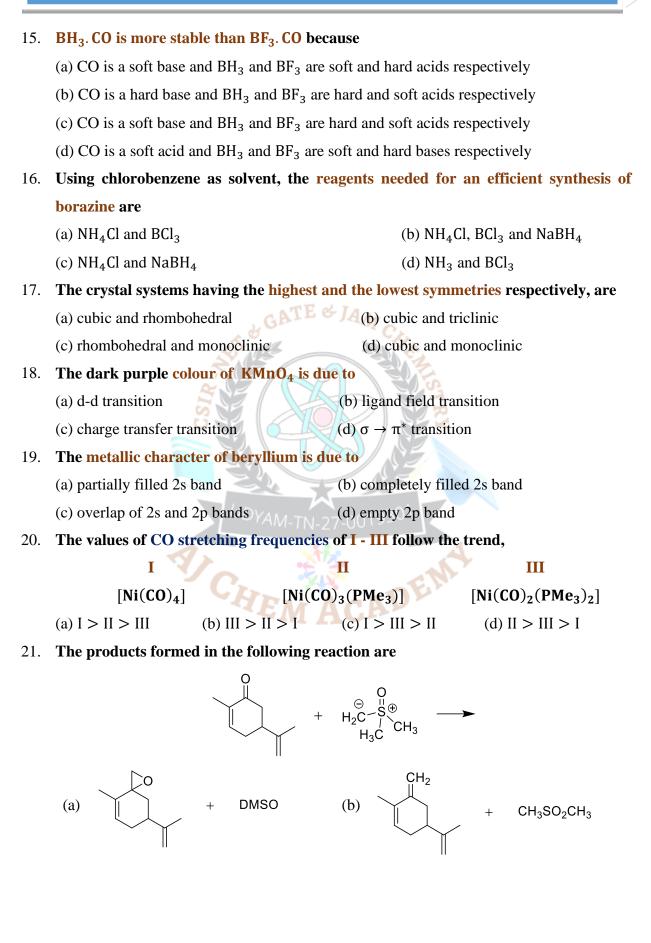
- (a) the pH of the solution does not change (b) the pH of the solution decreases
- (c) the pH of the solution increases
- (d) the pH of the solution is 7

2

9. According to MO theory, for the species 'C₂'

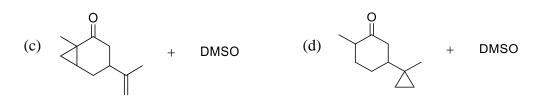
- (a) bond order is zero and it is paramagnetic (b) bond order is zero and it is diamagnetic
- (c) bond order is two and it is paramagnetic (d) bond order is two and it is diamagnetic

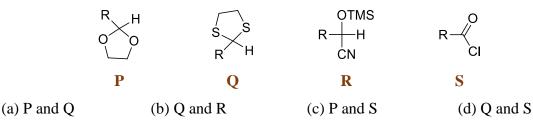
10. The sensitivity of a 600 MHz NMR spectrometer is more than that of a 60 MHz spectrometer because

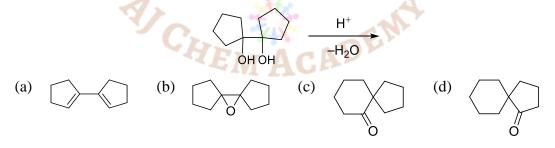

- (a) Population of spin states is directly proportional to the applied magnetic field
- (b) Population of spin states is inversely proportional to the applied magnetic field
- (c) According to the Boltzmann distribution law, the excess population in the lower spin state increases with increasing applied magnetic field
- (d) The spectral scan width is more for a 600 MHz spectrum compared to a 60 MHz spectrum
- 11. The magnetic moment of an octahedral Co (II) complex is 4.0 μ_{β} . The electronic configuration of the complex is:
 - (a) $t_{2g}^5 e_g^2$ (b) $t_{2g}^6 e_g^1$ (c) $t_{2g}^3 e_g^4$ (d) $t_{2g}^4 e_g^3$
- 12. The square planar complex, [IrCl(PPh₃)₃] undergoes oxidative addition of Cl₂ to give two products, which are
 - (a) fac and mer isomers (b) cis and trans isomers (c) linkage isomers (d) enantiomers
- 13. The ligand field bands of lanthanide complexes are generally sharper than those of transition metal complexes because
 - (a) transitions are allowed for lanthanide complexes
 - (b) intensity of the bands are higher for lanthanide complexes
 - (c) f-orbitals have higher energy than d-orbitals
 - (d) f-orbitals, compared to d-orbitals, interact less effectively with ligands

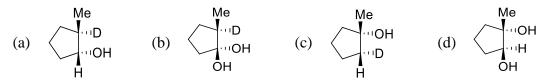
14. Nature has chosen Zn(II) ion at the active site of many hydrolytic enzymes because

- (a) Zn (II) is poor Lewis acid
- (b) Zn (II) does not have chemically accessible redox states
- (c) Zn (II) forms both four and higher coordination complexes
- (d) Zn (II) forms weak complexes with oxygen donor ligands.

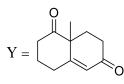





22. The acyl anion equivalents, among the following compounds (P–S), are

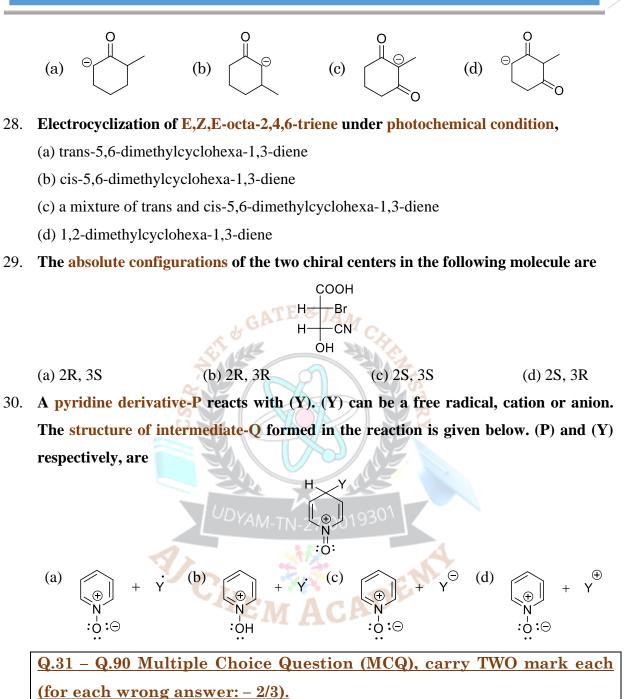

¹H–NMR spectrum of a compound with molecular formula C₄H₉NO₂ shows δ 5.30 (broad, 1H), 4.10 (q, 2H), 2.80 (d, 3H), 1.20 (t, 3H) ppm. The structures of the compound that is consistent with the above data is:

- (a) CH₃NHCOOCH₂CH₃
- (c) CH₃OCH₂CONHCH₃ (d) CH₃CH₂OCH₂CONH₂
- 24. Among the following compounds, the one that undergoes deprotonation most readily in the presence of a base, to form a carbanion is:


25. The structure of the product formed in the reaction given below is

26. Hydroboration of 1-methylcyclopentene using B_2D_6 , followed by treatment will alkaline hydrogen peroxide, gives

27. The enolate ion that reacts with 3-buten-2-one to form (Y) is



4

(b) CH₃CH₂NHCOOCH₃

31.		Column-I		Column-II
	Р.	T(aq) $T(aq)$	(i)	Enzymatic reaction
	Q.	$Zn_{(s)} + CuSO_{4(aq)} \rightarrow Products$ (i	ii)	Chain reaction
	R.	$H_2 + Cl_2 \xrightarrow{\Delta} Products$ (i	iii)	Redox reaction
	S.	Fischer-Tropsch synthesis of hydrocarbons (i	iv)	Precipitation reaction
		(v)	Surface reaction
		()	vi)	Hydrolysis reaction

www.csircoaching.com

ajchemacademy@gmail.com

	(P)		(Q)		(R)		(S)		(P)		(Q)		(R)		(S)
(a)	(ii)	;	(iv)	;	(v)	;	(vi)	(b)	(i)	;	(iii)	;	(ii)	;	(iv
(c)	(iv)	;	(iii)	;	(ii)	;	(v)	(d)	(i)	;	(vi)	;	(ii)	;	(v)

32.		Column-II Column-II
	P.	Supporting electrolyte (i) Overpotential
	Q.	$Zn(Hg)_{Q=1}$ $ZnCl_{2(aq)}$ $Zn(Hg)_{Q=2}$ (ii) Residual current
	R.	Inversion temperature (iii) Electrolyte concentration cell
	S.	Entropy of vapourisation(iv)Electrode concentration cell
		GATE & JA (y) Trouton's rule
		(vi) Joule-Thomson expansion
		(P) (Q) (R) (S) (P) (Q) (R) (S)
	(a)	(ii) ; (iv) ; (vi) ; (v) (b) (ii) ; (iv) ; (iii) ; (vi)
	(c)	(i) ; (iv) ; (vi) ; (iii) (d) (i) ; (iii) ; (vi) ; (vi)

33.		Column-I UDYAM-TN-27-		Column-II
	P.	Kroenecker delta	(i)	Electronic transition
	Q.	Franck-Condon principle	(ii)	Isothermal process
	R.	Kirchoff's equation	(iii)	Orthonormal set
	S.	Glass transition temperature	(iv)	Reaction enthalpy
			(v)	Turnover number
	l		(vi)	Polymer

	(P)		(Q)		(R)		(S)	
(a)	(i)	;	(iii)	;	(v)	;	(vi)	_
(c)	(i)	;	(iii)	;	(v)	;	(ii)	

	(P)		(Q)		(R)		(S)	
(b)	(iii)	;	(i)	;	(iv)	;	(vi)	
(d)	(iii)	;	(i)	;	(vi)	;	(ii)	

34.		Enzyme		Metal at the Active site
	Р.	Liver alcohol dehydrogenase	(i)	Cu
	Q.	Cytochrome C oxidase	(ii)	Fe and Cu
	R.	Hemocyanin	(iii)	Zn

_

Tiruchirappalli – 620 024

6 🥖

	G.	ATE – 2003 -	- CY	
S.	Myoglobin	(iv) (v) (vi)	Fe Mo Cu and Zn	
	(P) (Q) (R)	(S)	(P)	(Q) (R) (S)
(a)	(vi) ; (ii) ; (i)	; (iv)	(b) (iii) ;	(ii) ; (i) ; (vi)
(c)	(iii) ; (ii) ; (iv)	; (v)	(d) (v) ;	(vi) ; (i) ; (ii)
	Column-I		Column-II	
Р.	[(PPh ₃) ₃ RhCl]	(i)	Friedel-Crat	fts catalyst
Q.	$[\mathbf{Rh}(\mathbf{CO})_2\mathbf{I}_2]$	GATE & J(ii)	Hydroformy	vlation of alkenes
R.	[PdCl ₄] ^{2–}	(iii)	Hydrogenat	ion process
S.	[HCo(CO) ₄]	(iv)	The Wacker	r process
	ALL STREET	(v)	Monsanto a	cetic acid synthesis
	5	(vi)	Reppe catal	yst
	(P) (Q) (R)	(S)	(P)	(Q) (R) (S)
(a)	(P) (Q) (R) (iii) ; (v) ; (iv)		(P) (b) (iv) ;	(Q) (R) (S) (i) ; (vi) ; (ii)
(a) (c)		;; _{/A} (ii) ; (i)	(b) (iv) ; (d) (iii) ;	(i) ; (vi) ; (ii) (ii) ; (i) ; (v)
	(iii) ; (v) ; (iv)/	;; _{/A} (ii) ; (i)	(b) (iv) ; (d) (iii) ;	(i) ; (vi) ; (ii) (ii) ; (i) ; (v)
	(iii) ; (v) ; (iv)/	;; _{/A} (ii) ; (i)	(b) (iv) ; (d) (iii) ;	(i) ; (vi) ; (ii) (ii) ; (i) ; (v)
	(iii) ; (v) ; (iv) (v) ; (iv) ; (ii)	;; _{/A} (ii) ; (i)	(b) (iv) ;	(i) ; (vi) ; (ii) (ii) ; (i) ; (v)
(c)	(iii) ; (v) ; (iv) (v) ; (iv) ; (ii) List-I	; (i) ; (i) List-II	(b) (iv) ; (d) (iii) ;	(i) ; (vi) ; (ii) (ii) ; (i) ; (v)

(F Staggered ferrocene (iv) D₅ S. **Skew ferrocene** T. **(v)** (vi) (Q) (R) (S) (P) ; (ii) (iii) ; (vi) (a) (v) ;

; (iv) (b) (ii) (iv) (i) (iii) ; ; (v) ; ; (vi) (v) (i) (c) ; (ii) ; ; (iv) ; (d) (iii) ; (vi) (iv) ; (v) ; (i) ;

Tiruchirappalli – 620 024

 $\mathbf{D}_{\mathbf{5h}}$

D_{5d}

(T)

ajchemacademy@gmail.com

7

35.

36.

 \bigoplus

- 37. For the reaction, $Hg_2Cl_{2(s)} + H_{2(g)} \rightarrow 2Hg_{(l)} + 2HCl_{(aq)}$, the correct representation of the cell and the thermodynamic properties ΔG , ΔH and ΔS at 298 K respectively, are (given : $E_{298} = 0.2684$ V and temperature coefficient = -3×10^{-4} V K⁻¹)
 - (a) $Pt|H_2(g, 1atm)|HCl(aq)|Hg_2Cl_2(s)|Hg(\ell)$ $\Delta G = -51.8 \text{ kJ mol}^{-1}, \Delta H = -69 \text{ kJ mol}^{-1}, \Delta S = -58 \text{ J K}^{-1} \text{ mol}^{-1}$
 - (b) $Pt|H_2(g, 1atm)|HCl(aq)|Hg_2Cl_2(s)|Hg(\ell)$ $\Delta G = -25.9 \text{ kJ mol}^{-1}, \Delta H = -34.5 \text{ kJ mol}^{-1}, \Delta S = -29 \text{ J K}^{-1} \text{ mol}^{-1}$
 - (c) Hg (ℓ) | Hg₂Cl₂(s)|HCl(aq)|H₂(g, 1atm)|Pt $\Delta G = -51.8 \text{ kJ mol}^{-1}, \Delta H = -69 \text{ kJ mol}^{-1}, \Delta S = 58 \text{ JK}^{-1} \text{ mol}^{-1}$
 - (d) Hg (ℓ) | Hg₂Cl₂(s)|HCl(aq)|H₂(g, 1atm)|Pt $\Delta G = 51.8 \text{ kJ mol}^{-1}, \Delta H = 69 \text{ kJ mol}^{-1}, \Delta S = 58 \text{ JK}^{-1} \text{ mol}^{-1}$
- 38. Among CH₃Cl, CH₂Cl₂, CHCl₃, CH₃Br and CH₃I in the gaseous state, the one having highest molar entropy value at room temperature is

(a)
$$CHCl_3$$
 (b) CH_3Cl (c) CH_3Br (d) CH_3I

- 39. Two solid components form a congruent melting solid in situ. The phase diagram of the system has
 - (a) five invariant points, two equilibria involving three phases and two equilibria involving two phases *ODYAM-TN-27-001930*
 - (b) three invariant points, two equilibria involving three phases and three equilibria involving two phases
 - (c) five invariant points, two equilibria involving three phases and three equilibria involving two phases
 - (d) three invariant points, three equilibria involving three phases and two equilibria involving two phases
- 40. H₂ and Br₂ react to give HBr by the following steps

$$Br_{2} + M \xrightarrow{k_{1}} 2Br + M \text{ (fast) } (K = k_{1}/k_{-1})$$

$$Br + H_{2} \xrightarrow{k_{2}} HBr + H \text{ (slow)}$$

$$H + Br_{2} \xrightarrow{k_{3}} HBr + Br \text{ (fast)}$$

The probable rate law for the above sequence is:

(a) rate = $k_2[H_2][Br_2]^{1/2}$ (b) rate = $k_2[H_2][Br_2]$ (c) rate = $k_2(k)^{1/2}[H_2][Br_2]^{1/2}$ (d) rate = $k_2(k)^{1/2}[H_2][Br_2]^{1/2}$

Tiruchirappalli – 620 024

ajchemacademy@gmail.com

	Common data for Q. 41 and Q. 42.							
	For the opposing reaction, $A + B \xrightarrow{k_1} C + D$							
	The forward reaction	on has values E_a = 1 ($00 \text{ kJ mol}^{-1} \text{ and } \text{A} =$	= 1.0 × 10 ¹⁰ M ⁻¹ s ⁻¹ .				
	The equilibrium co	ncentration of A, B, C	C and D are 1.0 M, 2	.0 M, 5.0 M and 4.0 M				
	respectively, at 700	К.						
41.	The values of k_1 and	d k_1, respectively, a	t this temperature a	re				
	(a) 20 $M^{-1}s^{-1}$ and 2	$2.0 \text{ M}^{-1} \text{s}^{-1}$	(b) $345 \text{ M}^{-1}\text{s}^{-1}$	and 34.5 $M^{-1}s^{-1}$				
	(c) $34.5 \text{ M}^{-1}\text{s}^{-1}$ and	$13.45 \text{ M}^{-1}\text{s}^{-1}$	(d) 200 M ⁻¹ s ⁻¹	and 20 $M^{-1}s^{-1}$				
42.	The rate constant (k ₁) for the forward re	eaction at 1000 K is:					
	(a) $5.98 \times 10^4 \text{ M}^{-1}\text{ m}^{-1}$	nin	(b) 5.98×10^2 M	$I^{-1}s^{-1}$				
	(c) $1.00 \times 10^3 \text{ M}^{-1}\text{s}$		(d) 5.98×10^4 M	$I^{-1}s^{-1}$				
43.	For the reaction	$N_2(g) + 3H_2(g) \rightarrow 2$	NH ₃ (g), Compute t	he entropy change (in				
	J/K/mol) for the p	rocess and comment o	on the sign of the pro	operty				
	Species	NH _{3(g)}	N _{2(g)}	$H_{2(g)}$				
	S ⁰ (J/K/mol)	192.3	191.5	130.6				
	(a) $\Delta S^0 = -37.65 \text{ J}$	/K/mol; negative sign	indicates that there is	a decrease in the				
	gaseous species	during the reaction	E A	r				
	(b) $\Delta S^0 = -198.7$	/K/mol; negative sign	n indicates that there i	s a decrease in the				
	gaseous species	during the reaction.	ICAP					
	(c) $\Delta S^0 = -31.25$	/K/mol; negative sigr	n indicates that there i	s a decrease in the				
	gaseous species	during the reaction.						
	(d) $\Delta S^0 = +31.25$	/K/mol; the positive s	sign indicates that the	reaction is spontaneous.				
44.	The translational p	partition function of a	a hydrogen molecul	e confined in a 100 mL				
	flask at 298 K (Mol	. wt. of hydrogen =	2 .016) is:					
	(a) 2.8×10^{20}	(b) 2.8×10^{25}	(c) 2.8×10^{26}	(d) 2.8×10^{27}				
45.	ΔH_{298}^0 for the read	tion, $C_2H_4O_{(g)} \rightarrow C$	$H_{4(g)} + CO_{(g)}$, is -10	6.0 kJ. From the given				
	data, evaluate the te	emperature at which	$\Delta \mathbf{H}$ will be zero.					
	Substance:	$C_2H_4O_{(g)}$	CH _{4(g)}	CO _(g)				
	C _P (J/K/mol)	50	36	30				
	(a) 1298 K	(b) 1000 K	(c) 1298 °C	(d) 1100 °C				
	hirappalli – 620 024	www.csircoachin	a com	ajchemacademy@gmail.com				

9

 \oplus

$\overline{\text{GATE}} - 2003 - \overline{\text{CY}}$

- 46. At 273 K, N₂ is adsorbed on a mica surface. A plot of 1/V vs 1/P (V in m³ and P in torr) gives a straight line with a slope equal to 2.0×10^{-5} torr m⁻³ and an intercept equivalent V_m equal to 4. $0\times 10^{-8}\,m^3.$ The adsorption coefficient and the number of molecules of N₂ forming the mono layer, respectively, are (a) 1.25×10^{12} torr⁻¹ and 1.075×10^{18} (b) 2.5×10^{12} torr⁻¹ and 1.075×10^{18} (c) 2.5×10^{12} torr⁻¹ and 1.75×10^{18} (d) 1.25×10^{10} torr⁻¹ and 1.075×10^{18}
- 47. For the reaction, $2Cl_{(g)} \rightarrow Cl_{2(g)}$; the thermodynamics properties:
 - (a) ΔG , ΔH and ΔS are positive
 - (b) ΔG , ΔH and ΔS are negative
 - (c) ΔG and ΔH are negative and ΔS is positive
 - (d) ΔG is negative and ΔH and ΔS are positive
- 48. The standard free energies of formation of H₂S_(g) and CdS_(s) at 100 °C are −49.0 kJ/mol and -127.2 kJ/mol, respectively. Use these data to predict whether H_{2(g)} will reduce CdS_(s) to metallic Cd at this temperature
 - (a) $\Delta G = -78.2 \text{ kJ/mol}$ and H₂ reduces CdS
 - (b) $\Delta G = -39.1 \text{ kJ/mol}$ and H₂ reduces CdS
 - (c) $\Delta G = 0 \text{ kJ/mol}$ and the reaction is at equilibrium

length 'a' of a one-dimensional box is depicted by

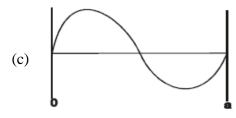
- (d) $\Delta G = +78.2 \text{ kJ/mol}$ and the reaction is not feasible
- 49. From the data of two half-cell reactions:

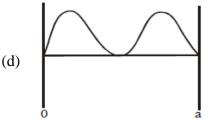
 $E^0 = +0.22 V$ $AgCl(s) + e^- \rightarrow Ag(s) + Cl^-(aq)$ $Ag^+(aq) + e^- \rightarrow Ag(s)$ $E^0 = +0.80 V$

the solubility product of AgCl at 298 K, is calculated to be

(a) 1.5×10^{-10} (b) 2.1×10^{-7}

50. For the energy level $(2 h^2/ma^2)$ the probability for a particle of mass 'm' over the


(b)


(c) 3.0×10^{-3}

(d) 1.2×10^{-5}

51. Among the following complexes the 18-electron rule is not followed in

Ι	II	III	IV
$[(C_6H_6)_2Cr]$	[HMn(CO) ₅]	$[(CH_3CO)Rh(CO)I_3]^-$	$[CpFe(CO)_2(CH_3)]$
(a) III only	(b) II and III	(c) I and IV	(d) II only

52. The incorrect statement regarding the Fischer-type metal carbene complexes is that

- (a) carbene acts as a σ donor and π acceptor $\int A_{M}$
- (b) all atoms directly connected to carbene C atom are coplanar
- (c) the bond between the metal and the carbene C atom has partial double bond character
- (d) the carbene C atom is nucleophilic

53. The xenon compounds that are iso-structural with IBr_2^- and BrO_3^- respectively are

- (b) bent XeF_2 and pyramidal XeO_3 (a) linear XeF_2 and pyramidal XeO_3
- (d) linear XeF_2 and tetrahedral XeO_3 (c) bent XeF_2 and planar XeO_3
- 54. The reagents needed for an efficient synthesis of borazine are (a) NH₄Cl and BCl₃
 - (b) NH_4Cl with $NaBH_4$ on Δ

(d) NH₃ and BCl₃

- 55. The number of manganese ions in tetrahedral and octahedral sites, respectively in Mn₃O₄ are
 - (a) one Mn^{2+} and two Mn^{3+} (b) one Mn^{3+} and two Mn^{2+}
 - (c) two Mn^{3+} and one Mn^{2+} (d) two Mn^{2+} and one Mn^{3+}
- 56. Gold crystallizes in face-centered-cubic lattice. The atomic weight and density of gold are 196.97 and 19.4 g/cm³ respectively. The length of the unit cell is

(a)
$$2.563 \text{ Å}$$
 (b) 3.230 Å (c) 4.070 Å (d) 8.140 Å

- 57. Solid Co₂(CO)₈ shows infrared CO stretching bands at 1857, 1886, 2001, 2031, 2044, 2059, 2071 and 2112 cm⁻¹. When $Co_2(CO)_8$ is dissolved in hexane, the carbonyl bands at 1857 and 1886 cm⁻¹ disappear. These changes in the infrared spectrum in hexane are due to.
 - (a) Loss of terminal CO

(c) NH_3 and $NaBH_4$

(b) Structural change of $Co_2(CO)_8$ involving conversion of terminal CO to bridging CO

- (c) Dissociation of $Co_2(CO)_8$ to $Co(CO)_4$
- (d) Structural changes of $Co_2(CO)_8$, involving conversion of bridging CO to terminal CO
- 58. Match the silicate minerals (column I) with their compositions (column II) and order of hardness (column III)

	Ι		II		III
Р	talc	U	$KAl_3Si_3O_{10}(OH)_2$	X	high
Q	muscovite	V	$Mg_{3}Si_{4}O_{10}(OH)_{2}$	Y	low
R	margarite	W	$CaAl_4Si_2O_{10}(OH)_2$	Z	intermediate

(a) P-V-Y ; Q-U-Z ; R-W-X (b) P-U-X ; Q-V-Z ; R-W-Y (c) P-W-X ; Q-V-Y ; \mathbb{R} -U-Z \mathcal{O} (d) P-V-Z ; Q-U-Y ; \mathbb{R} -W-X

59. The structure of $P_4N_4Cl_8$ is puckered whereas that of $P_4N_4F_8$ is planar because

- (a) F is more electronegative than Cl
- (b) F is smaller in size than that of Cl
- (c) F is more polarizable than Cl
- (d) Extent of π –electron delocalization is more in P₄N₄Cl₆ than in P₄N₄F₆.
- 60. The correct order of addition of NH_3 , pyridine (py) and Br^- to $[PtCl_4]^{2-}$ to obtain

DVAM-[1Cl27-CBr]930

- (b) it forms an 18-electron adduct with ethene
- (c) one of the decomposition products is ethene
- (d) it prevents α -elimination of ethene

62. The ground state term symbols for p^3 and d^3 electronic configuration respectively, are

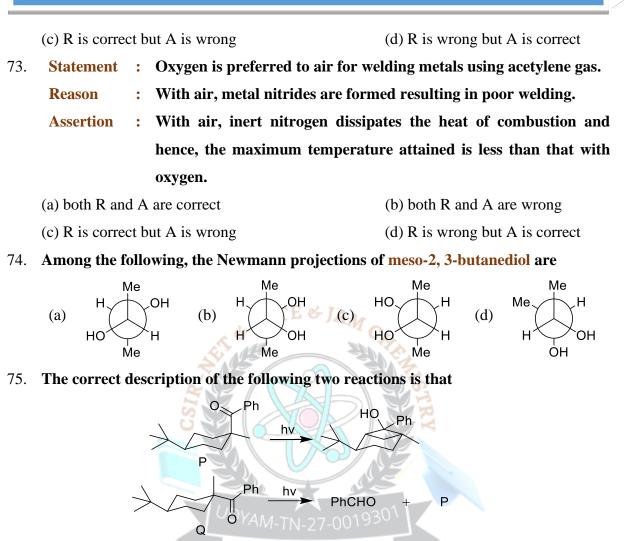
	(a) ${}^{4}S$ and ${}^{4}F$	(b) ${}^{4}\text{D}$ and ${}^{4}\text{F}$	(c) ^{1}D and ^{4}F	(d) ${}^{4}S$ and ${}^{2}G$
63.	The "styx" code for d	iborane is		
	(a) 2020	(b) 2200	(c) 2002	(d) 0220
64.	$[CoCl(NH_3)_5]^{3+} + [CoCl(NH_3)_5]^{3+}$	$\operatorname{Cr}(\mathrm{H}_2\mathrm{O})_6]^{2+} \to [\operatorname{Co}(\mathrm{I}_2\mathrm{O})_6]^{2+}$	$(H_2O)(NH_3)_5]^{2-} + [Cr_1]^{2-}$	$Cl(H_2O)_5]^{3+}$

The correct statement regarding the above reaction is that

- (a) it follows outer-sphere mechanism
- (b) it follows inner-sphere mechanism with NH₃ acting as the bridging ligand
- (c) it follows inner-sphere mechanism with Cl⁻acting as the bridging ligand
- (d) it is not an electron-transfer reaction
- 65. The percentage transmittance of a transition metal complex at 360 nm and at 25 °C is 25 % for a 6 × 10⁻⁴ molL⁻¹ solution in a 1 cm cell. The molar adsorption coefficient in the unit of L mol⁻¹ cm⁻¹ is:
 - (a) $\sim 1.0 \times 10^{-3}$ (b) $\sim 1.0 \times 10^{3}$ (c) $\sim 2.0 \times 10^{3}$ (d) $\sim 1.0 \times 10^{4}$
- 66. The bond order of the metal-metal bonds in $[Re_2Cl_8]^{2-}$, $[Re_2Cl_6(P(C_2H_5)_3)_2]$ and $[Re_2Cl_4P(C_2H_5Ph_2)_4]$ respectively are
- - Statement : solvolysis of tosylates (I) and (II) shown above, in acetic acid yield the corresponding acetates.
 - Reason : Due to neighbouring group participation(NGP) of the bridge phenonium ion, achiral intermediates are formed in both cases of (I) and (II).
 - Assertion : Tosylate (I) gives an acetate with retention of configuration and tosylate (II) gives a racemic mixture of acetates.
 - (a) both R and A are correct (b) both R and A are wrong
 - (c) R is correct but A is wrong (d) R is wrong but A is correct
- 68. Statement : Cyclopentadiene can potentially undergo Diels-Alder reaction $(4\pi + 2\pi)$ and $2\pi + 2\pi$ cycloaddition reactions with ketenes. However, it reacts to give stereospecifically only one product.
 - Reason : Due to sp hybridisation of the ketene carbon $2\pi_s + 2\pi_a$ cycloaddition is feasible and thermally this reaction is symmetry allowed.
 - Assertion : Ketenes undergo only $2\pi + 2\pi$ cycloaddition reaction with 1, 3dienes.

(b) both R and A are wrong

(c) R is correct but A is wrong


- (d) R is wrong but A is correct
- 69. Statement : 1,3-Dichloroallene is optically active and the enantiomers are resolvable.
 - **Reason** : Optical activity is due to the presence of a chiral center in the molecule.
 - Assertion : The enantiomers are resolvable because interconversion of enantiomers is possible only if there is a free rotation about C=C bonds, which is absent.
 - (a) both R and A are correct (b) both R and A are wrong
 - (c) R is correct but A is wrong CBTE / A (d) R is wrong but A is correct
- 70. Statement : At 273 K, the fugacities (in atm) of N₂ are 97.03 and 1839 at the experimental pressures (atm) of 100 and 1000, respectively.
 - Reason : At 1000 atm, the system is above the critical temperature and pressure.
 - Assertion : The contribution of the repulsive forces is more dominant at 1000 atm.
 - (a) both R and A are correct DYAM-TN-27-001930(b) both R and A are wrong
 - (c) R is correct but A is wrong (d) R is wrong but A is correct
- 71. Statement : for the equilibrium, $Ag_2CO_3(s) \leftrightarrow Ag_2O(s) + CO_2(g)$. A plot of ln K_p vs 1/T gives a linear relationship with a positive slope.
 - **Reason** : The reaction is exothermic.
 - Assertion : The free energy change for the reaction is more negative at higher temperatures.
 - (a) both R and A are correct (b) both R and A are wrong
 - (c) R is correct but A is wrong
- 72. Statement : The potential for the cell, Pt|H₂(1 atm)|HCl(m)|AgCl(s)|Ag(s) decreases as the concentration of HCl is increased.
 - **Reason** : The mean ionic activity coefficient decreases with increase in HCl concentration.
 - **Assertion** : In a plot of E vs [HCl], the intercept at the potential axis is equal to the standard reduction potential of the hydrogen electrode.
 - (a) both R and A are correct

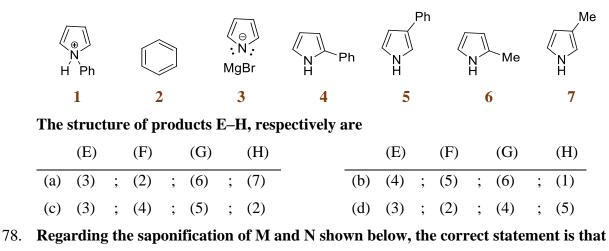
(b) both R and A are wrong

(d) R is wrong but A is correct

- (a) Both P and Q undergo α –cleavage reaction
- (b) P undergoes only Norrish type II reaction whereas Q undergoes only Norrish type I reaction.
- (c) Q gives P by photochemical chair to chair interconversion of the cyclohexane Ring
- (d) Both P and Q undergo Norrish type I reaction, but only Q gives S through this mechanism.
- 76. A 10.0 g mixture of n-butane and 2-butene was treated with bromine in CCl_4 and it consumed 8.0 g of bromine (Atomic wt = 80). Another 10.0 g of the same mixture was hydrogenated to get n-butane only. The weight of 2-butene in the original mixture and the gain in the weight of the mixture after hydrogenation, respectively are

(a) 2.8 g and 0.1 g (b) 5.6 g and 0.4 g (c) 7.2 g and 0.8 g (d) 8.0 g and 1.0 g

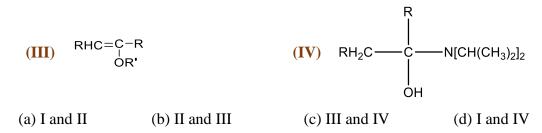
77. Pyrrole + PhMgBr \rightarrow E + F

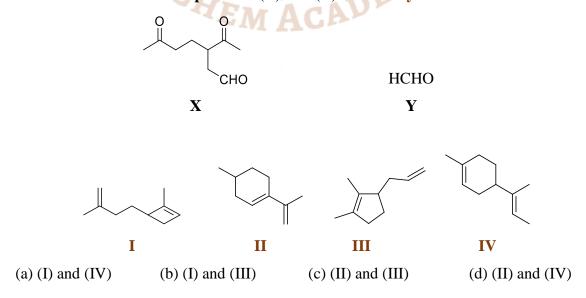

 $\mathbf{E} + \mathbf{MeCl} \longrightarrow \mathbf{G} + \mathbf{H}$

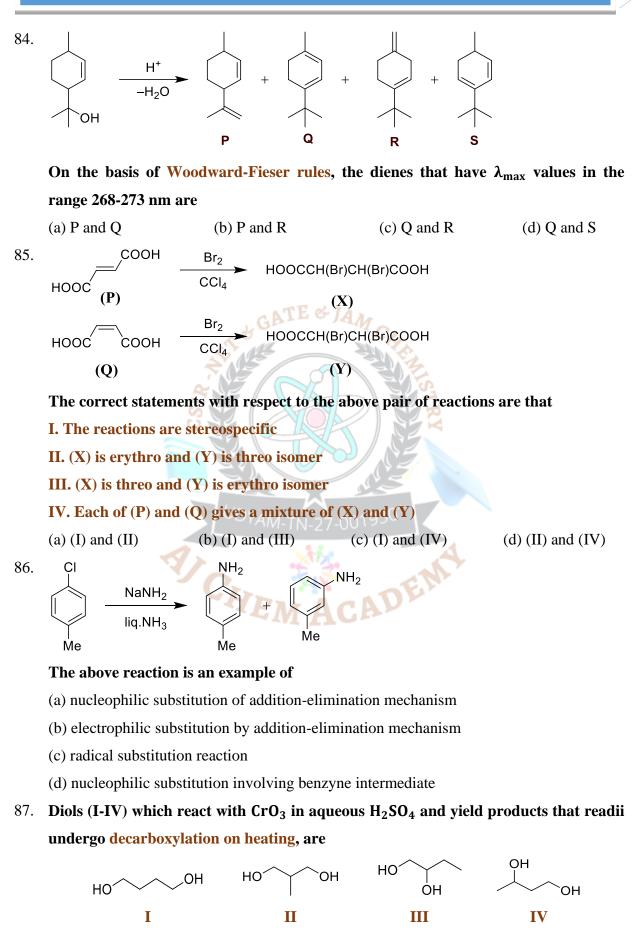
 $F + MeCl \rightarrow$ no reaction without catalyst

Tiruchirappalli – 620 024

www.csircoaching.com

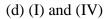



- (a) M reacts faster than N because the transition state is less crowded for M than for N
- (b) M reacts slower than N because the transition state is more crowded for M than for N
- (c) N and M react at the same rate because of formation of tetrahedral intermediate in both cases
- (d) N reacts slower than M because of its greater thermodynamic stability
- 79. Reactant P labelled with *C (labelled carbon marked with a star) rearranged to product Q on heating. The structure of reactant P is

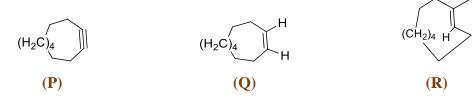

81. Among the halobenzenes, the one that undergoes electrophilic aromatic substitution most readily and the reason for its higher reactivity are

- (a) fluorobenzene; the benzenonium ion intermediate is stablished by 2p (F), 2p (C) overlap which is most efficient
- (b) chlorobenzene; very high electron affinity of chlorine considerably lowers the energy of activation of the reaction
- (c) bromobenzene; high polarising power of the halogen atom helps in effective stabilisation of the benzenonium ion intermediate
- (d) iodobenzene; iodine atom has the lowest electronegativity and hence electron density of the phenyl ring is least disturbed
- 82. Among the carboxylic acids shown below, the ones that exhibit stereoisomerism an also form cyclic anhydrides on heating are
 - (I) $HOOCCH(CH_3)CH_2CH_2COOH$ (II) $HOOCCH({}^iC_3H_7)COOH$
 - (III) $HOOCCH(C_2H_5)CH_2COOH$ (IV) $HOOCC(CH_3)(C_2H_3)COOH$
 - (a) (I) and (II) \checkmark (b) (I) and (III) \checkmark (c) (II) and (III) \checkmark (d) (II) and (IV)
- 83. The reactants that lead to products (X) and (Y) on ozonolysis are

0

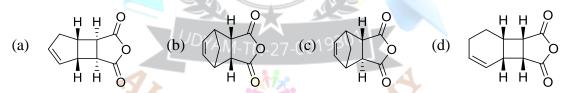


Tiruchirappalli – 620 024


0

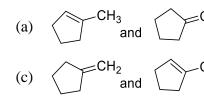
18

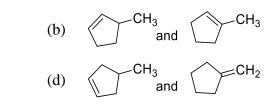
88. Reactant P gives products Q and/or R.



The possible reagents are:

Na/liq.NH3H2/Pd-CaCO3H2/Pd/CIIIIII


The correct statement with respect to the conversion is:


- (a) Q is obtained on treatment with reagent (I)
- (b) R and Q are obtained on treatment with reagent (III)
- (c) R is obtained on treatment with reagent (I)
- (d) R is obtained on treatment with reagent (II)
- 89. The product obtained in the thermal reaction of cyclopentadiene with maleic anhydride is

90. Two alkenes, X (91% yield) and Y (9% yield) are formed when the following is heated.

The structures of X and Y, respectively are

Answer Key

Q.No	Ans	Q.No	Ans	Q.No	Ans	Q.No	Ans
1.	b	26.	а	51.	а	76.	**
2.	а	27.	С	52.	d	77.	а

Tiruchirappalli – 620 024

www.csircoaching.com

3.	С		28.	а		53.	а		78.	b
4.	d		29.	а		54.	b		79.	С
5.	а		30.	d		55.	а		80.	b
6.	а		31.	С		56.	С		81.	а
7.	С		32.	а		57.	d		82.	b
8.	а		33.	b		58.	а		83.	b
9.	d		34.	b		59.	b		84.	d
10.	С		35.	а		60.	а		85.	а
11.	а		36.	а		61.	а		86.	d
12.	а		37.	b		62.	а		87.	С
13.	d		38.	а		63.	С		88.	С
14.	d		39.	С		64.	С		89.	b
15.	а		40.	С	No.	65.	b		90.	С
16.	b		41.	b	ATE	66.	а			
17.	b		42.	d	GRA	67.	d			
18.	С		43.	b	15	68.	а			
19.	С		44.	С		69.	d	2		
20.	а		45.	а		70.	а	ES		
21.	С		46.	а	XTC	71.	С	R		
22.	b		47.	b	Q_A	72.	а	Y		
23.	а		48.	d		73.	**			
24.	а		49.	а		74.	а			
25.	С		50.	а		75.	b			

MAM-TN-27-001950

© No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.

© Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.

© இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜே கெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்பு செய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.

© இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக்குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப் பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

О

