AJ Chem Academy–Trichy

Reg.No: UDYAM-TN-27-0019301

GATE – 2004 – Chemistry

www.csircoaching.com

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ University Chemistry Entrance (PhD | PG)
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching

Features

300	++	Live	\mathbb{C}	asses

➤ 200 ++ Concept Wise Tests

➤ 50 ++ Chapter Wise Tests

> 50 ++ Model Tests

➤ 2000 ++ Problem Discussions

> Recorded Videos

> A Well-Defined Curriculum

➤ A Strong Subject Foundation

➤ A Refined Learning Methodology

> Updated Study materials

> Freshers Can easily understand

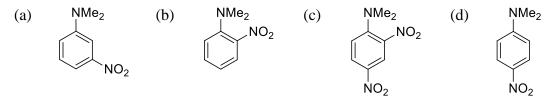
Question banks

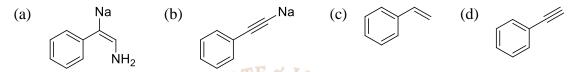
ajchemacademy@gmail.com

$\mathbf{Q.1}$ –	$\mathbf{Q.30}$	Multiple	Choice	Question	(MCQ),	carry	ONE	mark	each
(for e	ach w	rong ans	wer: - 1/	3) <u>.</u>		-			

1.	In units of $\frac{h^2}{8ml^2}$, the energy difference	between levels corre	sponding to 3 and 2 node
	eigenfunctions f	for a particle of mass n	n in a one dimensional	box of length ℓ is
	(a) 1	(b) 3	(c) 5	(d) 7
2.	On the basis of	LCAO-MO theory, the	e magnetic characteris	stics of N ₂ and N ₂ are
	(a) N ₂ is parama	gnetic and N ₂ is diamag	gnetic (b) both	th are paramagnetic
	(c) N ₂ is diamag	netic and N ₂ ⁺ is paramag	gnetic (d) both	th are diamagnetic
3.	The v _{rms} of a ga	as at 300 K is $30 R^{1/2}$.	The molar mass of the	gas, in Kg mol ⁻¹ , is
	(a) 1.0	(b) 1.0×10^{-1}	$(c) 1.0 \times 10^{-2}$	(d) 1.0×10^{-3}
4.	The coefficient			rking reversibly between
	the temperature	e T _c and T _h is given by		
	(a) $\frac{T_c - T_h}{T_c}$	$(b) \frac{T_h - T_c}{T_c}$	$(c) \frac{T_c}{T_h - T_c}$	$(d) \frac{T_h}{T_h - T_c}$
5.	At a given tem	perature and pressur	re, the phase diagrar	n of a three component
	system shows a	binodal curve. If the t	wo components are cl	nloroform and water, the
	third componer	nt, among the choices g	iven below, is	
	(a) benzene	(b) acetic acid	(c) toluene	(d) carbon tetrachloride
6.	A certain react	ion proceeds in a sequ	uence of three elemen	ntary steps with the rate
	constants k ₁ , k	κ_2 and κ_3 . If the observable	erved rate constant ((k _{obs}) of the reaction is
	expressed as k	$k_{obs} = k_3 (k_1/k_2)^{1/2},$	the observed activati	ion energy (E_{obs}) of the
	reaction is	711	AGI	
	$(a)\frac{1}{2}\Big[\frac{E_1}{E_2}\Big] + E_3$	$(b) \frac{E_3 + E_1}{E_2}$	(c) $E_3 \left[\frac{E_1}{E_2}\right]^{1/2}$	(d) $E_3 + \frac{1}{2}(E_1 - E_2)$
7.	Which one of th	e following is an exam	ple of a maximum boi	lling azeotrope?
	(a) $H_2O - HCl$	(b) $H_2O - C_2H_6OH$	(c) $CHCl_3 - CH_3OH$	(d) $CCl_4 - CH_3OH$
8.	For the reacti	on, $A + B \leftrightarrow X^{\dagger} \longrightarrow P$,	$E_a = 20.0 \text{ kJ mol}^{-1}$	at 300K. The enthalpy
	change for the f	formation of the activa	ted complex from the	reactants in kJ mol^{-1} is
	(a) 12	(b) 15	(c) 23	(d) 25
9.	In an osmotic p	oressure measurement	, a plot of height of s	olution (h) of density (ρ)
	versus concentr	ration $(g L^{-1})$ was made	e at a temperature T.	The slope of the plot will
	be equal to (who	ere g, given in the choi	ces below, is the accele	eration of free fall)
	(a) $\frac{\rho RT}{gM}$	(b) $\frac{gRT}{\rho M}$	$(c)\frac{RT}{\rho gM}$	(d) $\frac{gRM}{\rho T}$

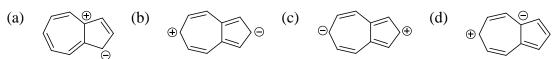
10.	If 0.001 M of a substance quer	nches the efficiency of fluores	scence by 20%, the value
	of Stem-Volmer constant in M	⁻¹ is	
	(a) 100 (b) 150	(c) 200	(d) 250
11.	Which one of the following is N	NOT a photodetector?	
	(a) Bolometer	(b) Charge-tra	nsfer device
	(c) Photomultiplier tube	(d) Silicon dio	ode
12.	The nature of excitation signal	used for cyclic voltammetry	is
	(a) linear scan (b) differen	tial pulse (c) triangular	(d) square wave
13.	The structure of SF ₄ is		
	(a) octahedral (b) tetrahedra	d (c) trigonal bipyramidal	(d) square planar
14.	The number of metal-metal bo	nds present in $Ir_4(CO)_{12}$ are	
	(a) 4 (b) 5	(c) 6	(d) 8
15.	The zero magnetic moment of o	octahedral K ₂ [NiF ₆] is due to)
	(a) low spin d ⁶ Ni(IV) complex	(b) low spin d ⁸	Ni(II) complex
	(c) high spin d ⁸ Ni(II) complex	(d) high spin d ⁶	Ni(IV) complex
16.	The number of hyperfine split	lines observed in ESR spectro	um of methyl radical is
	(a) 1 (b) 4	(c) 6	(d) 8
17.	The absorption of $[Co(NH_3)_6]^2$	2+ is: 4M-TN-27-0019301	
	(a) stronger than that of [Co(NH ₃	₃) ₅ Cl] ²⁺	
	(b) stronger than that of $[MnCl_4]$	2-	Y
	(c) weaker than that of $[MnCl_4]^2$	but stronger than that of [CO	$(NH_3)_5Cl]^{2+}$
	(d) weaker than those of both [M	$nCl_4]^{2-}$ and $[Co(NH_3)_5Cl]^{2+}$	
18.	Which one of the following stat	tements about ferrocene is FA	ALSE?
	(a) It obeys the 18-electron rule	(b) It is diamagne	tic
	(c) It is an orange solid	(d) It resists elect	rophilic substitution
19.	The bond angle of Cl ₂ O is		
	(a) smaller than that of F_2O	(b) greater than t	hat of H ₂ O
	(c) smaller than that of H_2O	(d) same as that of	of F ₂ 0
20.	The half-wave potential for a r	reversible reduction of a met	al ion in polarography is
	independent of		
	(a) Concentration of the supporti	ng electrolyte	
	(b) Concentration of the electroac	ctive species	
	(c) Concentration of the complex	ring agent	





(d) Temperature of the solution

21. The major product formed on nitration of N,N-dimethylaniline with conc. H₂SO₄ -HNO₃ mixture is


22. Reaction of phenylacetylene with sodamide in liquid ammonia generates

23. Proton decoupled ¹³C-NMR spectrum of a bicyclooctane (C₈H₁₄) exhibits only two signals. The Structure of the compound is:

- 24. Cyclohexyl benzyl ether when reacted with hydrogen in the presence of 10% palladium on charcoal generates a mixture of
 - (a) cyclohexanol and benzyl alcohol (b) cyclohexane and benzyl alcohol (c) cyclohexanol and toluene (d) cyclohexane and toluene
- 25. In electrophilic aromatic substitution reactions, nitro group is meta-directing, because the nitro group
 - (a) increase electron density at meta-position
 - (b) increase electron density at ortho-and para-positions
 - (c) decreases electron density at meta-position
 - (d) decreases electron density at ortho-and para-positions
- 26. Among the resonance forms given below, the one which contributes most to the stability of azulene is

27. The configurations at the two asymmetric centres (C-1 and C-6) in the bicyclo[4.4.0]decane, given below are

ajchemacademy@gmail.com

(~)	1R.	4 D
(a) IK	nĸ

(b) 1R, 6S

(c) 1S, 6S

(d) 1S, 6R

28. The reactive intermediate involved in the conversion of phenol to salicylaldehyde using chloroform and sodium hydroxide is

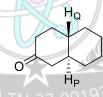
(a) Cl₂C:

(b) Cl₂CH⁺

(c) Cl₂CH⁻

(d) Cl₂CH⁺

29. Conversion of Ph-NH₂ into Ph-CN can be accomplished by


(a) reaction with sodium cyanide in the presence of nickel catalyst

(b) reaction with chloroform and sodium hydroxide

(c) diazotisation followed by reaction with CuCN

(d) reaction with ethyl formate followed by thermolysis

30. The vicinal coupling constant (J) expected for the protons H_P and H_Q in the compound given below will be in the range

(a)
$$0 - 2 \text{ Hz}$$

(b) 4 - 6 Hz

(c) 8 - 10 Hz

(d) 12 - 15 Hz

Q.31 - Q.90 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: - 2/3).

31. For one mole of an ideal gas, $\left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_P \left(\frac{\partial V}{\partial P}\right)_T =$

(a) -1

(b) $-\frac{R^2}{P^2}$

(c) +1

(d) $\frac{R^2}{P^2}$

32. Neglecting the mass of hydrogen (1.0 amu) and deuterium (2.0 amu) with respect to that of iodine (127 amu), the ratio between fundamental vibrational frequencies of HI and DI is:

(a) $\frac{1}{2}$

(b) 2

(c) $\frac{1}{\sqrt{2}}$

(d) $\sqrt{2}$

33. The population of J^{th} rotational level N_j is given by $N_j = N_0(2J+1)e^{[j(j+1)B]/KT}$. The J value of rotational level with maximum population (J_{max}) is given by

(a) $\frac{(2k T/B)-1}{\sqrt{2}}$

 $(b) \frac{\sqrt{2kT/B}-1}{2}$

 $(c)\frac{kT}{R}$

 $(d)\frac{B}{1-T}$

34. The fugacity coefficient (ϕ) is given by $\ln \phi = \int_0^P \left(\frac{z-1}{p}\right) dp$ where z is the

Q

$\mathrm{GATE} - 2004 - \mathrm{CY}$

	compressibility factor, and p t	the pressure. T	he fugacity	of a gas	governed	by the gas
	$law p(V_m - b) = RT is$					
	(a) p ln (V_m/RT) (b)	pe ^{b/RT}	(c) pe ^{-b}	p/RT	(0	l) pe ^{bp/RT}
35.	The number and symmetry ty	pe of normal n	nodes of vib	ration of	f H ₂ O are	
	(a) $3 \text{ and } 2A_1 + B_2$		(b) 3 and	$12A_1 + A_2$	A_2	
	(c) $3 \text{ and } 2A_1 + B_1$		(d) 4 and	$13A_1 + 1$	32	
36.	The gaseous reaction $2A + B$	\rightarrow C, with pa	rtial pressi	ires of j	$\mathbf{p_A} = 0.1$	atm; $p_B =$
	$0.001 atm and p_C = 1.0 atm$	n, proceeds to	the left	at 298 1	K. The e	quilibrium
	constant, K _p for the above rea	ction is				
	(a) 1.0×10^4 (b) 1.0	$\times 10^5$	(c) 1.0 >	< 10 ⁶	(d)	1.0×10^{7}
37.	The change in entropy when o	one mole of an	ideal gas is	compres	ssed to on	e-fourth of
	its initial volume and simultan	eously heated	to twice its	initial te	mperatur	e is
	(a) $(C_v - R) \ln 4$ (b) $(C_v -$	· 2R) ln2 (c) $(C_v - 2R)$) ln4	(d) (C_v	+ 2R) ln2
38.	For the reaction, $A_{(s)} \leftrightarrow B_{(s)}$	$(l) + 2C_{(g)}$, Δ	ΔG^0 (in Jou	les) = 9	0800 - 1	00T. The
	partial pressure of C _(g) at 600	K in Torr is		<		
	(a) 15 (b) 22		(c) 35			(d) 46
39.	Match the following:					
	$\mathbf{P.} \left(\frac{\partial \mathbf{U}}{\partial \mathbf{S}}\right)_{\mathbf{V}} \qquad \qquad \mathbf{(i)}$	♥ M-TN-27-00	019301			
		stire.	P	Q	R	S
	$\left(\frac{\partial U}{\partial V}\right)_{S}$ (ii)	-S (a)	iii	iv	i	ii
	$\mathbf{R}. \ \ (\partial \mathbf{G}) $ (iii)	\mathbf{T} (b)	iii	i	ii	iv
	$\left(\frac{\partial \mathbf{Q}}{\partial \mathbf{P}}\right)_{\mathbf{T}}$	(c)	i	iii	iv	ii
	S. (∂G) (iv)	$-\mathbf{P}$ (d)	iv	iii	i	ii
	S. $\left(\frac{\partial G}{\partial T}\right)_{P}$ (iv)					
40.	Match the following:					
	P. 4n + 2 rule	I.	Woodwar	d-Hoffm	ann rule	
	Q. single valued	II.	Bound sys	tem		
	$ < p_x \ge 0$	III.	Hurtree-F	ock The	ory	
	S. photochemically allowed		Huckel the	-		
		V.	Wave fund			
		VI.	unbound s	system		

P

S

R

Q

R

S

P

Q

	(a) I ; III ; IV ;	VI	(b)	IV ;	V ;	II ;	VI
	(c) II ; VI ; III ;	I	(d)	IV ;	V ;	II ;	I
41.	The solubility product of sil	ver sulphate a	t 298 K	is 1.0 >	< 10 ⁻⁵ .	If the	standard
	reduction potential of the ha	lfcell Ag ⁺ + e -	\rightarrow Ag is	0.80 V,	the sta	ndard	reduction
	potential of the half-cell Ag ₂ S	$50_4 + 2e \rightarrow 2A$	$\mathbf{g} + \mathbf{SO}_4^2$	is:			
	(a) 0.15 V (b) 0.2	2 V	(c) 0.	65 V		(d)	0.95 V
42.	The criterion for spontaneou	s change in term	ns of the	state fu	nctions	is:	
	(a) $dU_{S,V} \ge 0$ (b) dx	$A_{T,V} \ge 0$	(c) dS _t	$_{\rm U,V} \geq 0$		(d)	$dG_{T,V} \leq 0$
43.	One mole of an ideal gas (C	y = 1.5R) at a	tempera	ture 500) K is o	compre	ssed from
	1.0 atm to 2.0 atm by a rev	ersible isother	mal path	. Subse	quently	y, it is	expanded
	back to 1.0 atm by a reversib	ole adiabatic pa	th. The v	volume (of the f	inal sta	ate in litre
	is:	The same of the sa		2			
	(a) 15.6 (b) 2	0.5	(c)	31.1			(d) 41.0
44.	The vapour pressures of the	pure compone	ents 'P'	and 'Q'	are 70	00 Tor	r and 500
	Torr, respectively. When th	e two phases a	re in equ	uilibriuı	m at 1.	0 atm,	, the mole
	fraction of 'P' in the liquid p	hase is 0.6 and	in the va	pour ph	ase 0.4	. The a	ctivity co-
	efficient of component-P in the	ne solution on tl	ne basis o	f Raoul	t's law	is	
	(a) 0.60 (b) 0.	72 _{1M-TN-27-0}	0193 (c)	0.92		((d) 1.01
45.	The concentration of oxyger						
	oxygen at 298 K is 2.80	\times 10 ⁷ Torr, the	ne partia	al press	sure of	f oxyg	en in the
	atmosphere in Torr is,	EM AC	AD				
	(a) 28 (b) 32		(c)				(d) 15.68
46.	Decomposition of ammonia of						
	Torr s^{-1} . If the initial press	ure of ammoni	a is 100 '	Forr, th	e press	sure of	ammonia
	(in Torr) at $t = 200 \text{ s is}$						
	(a) 10 (b) 20		(c) 5				(d) 80
47.	For the reaction of the type	$P \xrightarrow{\kappa_1} Q -$	$\xrightarrow{\mathbf{R}_2} \mathbf{R}$,	given t	hat [P]	$]_0 = 1.$	$0M; k_1 =$
	$1\times 10^{-3}s^{-1}$ and $k_2=1\times 1$	$0^{-4}s^{-1}$, the time	e at whi	ch the c	oncent	rations	of Q and
	R are 0.5966 M and 0.0355	M, respectively	, is				
	(a) 500s (b) 750	S	(c) 10	00s		(d	l) 1500s
48.	The spinels CoFe ₂ O ₄ and Fe	Fe ₂ O ₄ , respecti	vely, are				
	(a) inverse and inverse		(b) invers	e and no	rmal		

	(c) normal and normal		(d) n	ormal and inve	erse
49.	According to Wad	e's rule, the	structures	of $B_{10}C_2H_1$	$[B_9C_2H_{11}]^{2-},$
	respectively, are				
	(a) closo and arachno	(b) nido and c	loso (c) cle	oso and nido	(d) nido and arachno
50.	The overall charge p	resent on the cy	clic silicate a	anion [Si ₆ O ₁₈]	ⁿ⁻ is
	(a) 6	(b) 12		(c) 18	(d) 24
51.	The ground state	term symbols	for high s	spin d ⁵ s ¹ an	d d ⁵ configurations,
	respectively, are				
	(a) 3S and 6S	(b) 6 P and 3 S		(c) 7 S and 6 S	(d) 7 P and 6 S
52.	The reagents require	d for the <mark>synth</mark> e	esis of cyclic	phosphazene	N ₄ P ₄ Cl ₈ are
	(a) PCl ₅ and NH ₃	LGAT	E & JAM	(b) POCl ₃ ar	nd NH ₄ Cl
	(c) POCl ₃ and NH ₃	AT ALL	<u></u>	(d) PCl ₅ and	NH ₄ Cl
53.	The isomerisms that	are possible in	the Co(III)	complexes [C	$o((\mathrm{NH_3})_3(\mathrm{NO_2})_3]$ and
	$[Co(NH_3)_5NO_2]Cl_2$,	respectively, an	e		
	(a) co-ordination and p	osition		(b) optical	and linkage
	(c) geometrical and lin	kage		(d) optical	and optical
54.	The perxenate ion [X	eO ₆] ^{4–} can be j	prepared by	3	
	(a) direct reaction of X	Ke with oxygen	N-27-001(b) reaction of X	eF ₆ with oxygen
	(c) hydrolysis of XeF ₆	in acidic mediu	m (d	l) hydrolysis of	XeF ₆ in basic medium
55.	In tetrahedral geome	etry, which one	of the follov	ving sets of ele	ctronic configurations
	will have orbital cont	ribution to the	magnetic m	oment?	
	(a) d^3 , d^4 , d^8 and d^9	(b) d^1 , d^6 , d^7 and	d^9 (c) d	3 , d^4 , d^7 and d^9	(d) d^1 , d^3 , d^4 and d^9
56.	The most suitable ro	ite to prepare t	rans-[PtCl ₂ ($(NH_3)(PPh_3)$	is:
	(a) $[PtCl_4]^{2-}$ with PPh	13 followed by re	eaction with	NH_3	
	(b) [PtCl ₄] ²⁻ with NH	3 followed by re	action with F	PPh ₃	
	(c) $[Pt(NH_3)_4]^{2+}$ with	HCl followed b	y reaction w	ith PPh ₃	
	(d) $[Pt(NH_3)_4]^{2+}$ with	PPh ₃ followed	by reaction v	with HCl	
57.	A solution containing	5 ppm of KMr	10 ₄ (M.W =	= 159) has a tı	cansmittance of 0.360
	measured in a 1 c	m cell at 500	nm. The	molar absorp	otivity of KMnO ₄ in
	$L \text{ mol}^{-1} \text{ cm}^{-1} \text{ is}$				
	(a) 1.1×10^4	(b) 1.4×1	0^{4}	(c) 1.9×10^4	(d) 2.7×10^4

58.	N/I - 4 - I-	41	P-11	lowing:
אר	viatch	THE	TAIL	ınwıng.
<i>J</i> U.	IVICULII		IUI	

- **P. Coulometry**
- Ion selective electrode
- R. **Polarography**
- S. **Amperometry**

- I. **Dropping mercury electrode**
- II. **Current efficiency**
- III. **Dead stop end point**
- IV. Membrane potential
- V. Conductometer
- VI. Actinometer.

	P		Q		R		S			P		Q		R		S
(a)	II	;	IV	;	I	;	III	0	(b)	I	;	II	;	III	;	V
(c)	VI	;	V	;	III	;	IV	TE & JAN	(d)	III	;	IV	;	I	;	VI

59. Match the following:

- Ρ. **Ferritin**
- Q. Vitamin B₁₂
- R. **Cytochromes**
- S. Valinomycin

- electron transport
- II. **Ionophore**
- HI. Oxygen transport
- IV. Nitrogen fixation
- Organometallic enzyme
- Iron storage.

	P		Q		R	S	23	•	P	6	Q		R		S	
(a)	VI	;	IV	;	II	;, I	- A	(b)	11	;	III	;	VI	;	IV	
(c)	III	;	V	•	IV	; VI	ИА	(d)	VI	;	V	•	I	;	II	

- 60. The number of absorption bands observed $[FeF_6]^{3-}$ and $[CoF_6]^{3-}$, respectively, are
 - (a) 1 and 3
- (b) 0 and 1
- (c) 0 and 3
- (d) 3 and 1
- 61. Regarding the catalytic cycle of hydrogenation of alkenes involving [RhCl(PPh₃)₃] as the catalyst, the correct statements is:
 - (a) Only 18-electron Rh complex is involved
 - (b) 14-, 16- and 18-electron Rh complexes are involved
 - (c) 14- and 16-electron Rh complexes are involved
 - (d) 16- and 18-electron Rh complexes are involved
- 62. The IR stretching frequency (v_{c0}) of P–S follows the order

$$[Mn(CO)_6]^+$$

$$H_3B \leftarrow CO$$

$$[V(CO)_6]^-$$

(a)
$$P > R > S > Q$$

(b)
$$S > P > R > Q$$

(c)
$$Q > S > P > R$$

(a)
$$P > R > S > Q$$
 (b) $S > P > R > Q$ (c) $Q > S > P > R$ (d) $R > Q > P > S$

63. The structures of $N(CH_3)_3$ and $N(SiH_3)_3$ respectively, are

- (a) trigonal planar and pyramidal
- (b) pyramidal and trigonal planar
- (c) pyramidal and pyramidal
- (d) trigonal planar and trigonal planar

64. Which one of the following is NOT correct in chromatography?

 $\mathbf{t}_{\mathbf{M}} = \mathbf{Retention}$ time for a species that is not retained by the stationary phase

 t_R = Retention time for the analyte

 $(t_R)_n$ =Retention time for the component 'n'

 W_n = Width of the peak at its base for the component 'n'

(a) Resolution =
$$\frac{(t_R)_2 - (t_R)_1}{2(W_1 + W_2)}$$

(b) Capacity factor
$$=\frac{t_R-t_M}{t_M}$$

(c) Separation factor =
$$\frac{(t_R)_2 - t_M}{(t_R)_1 - t_M}$$

(a) Resolution =
$$\frac{(t_R)_2 - (t_R)_1}{2(W_1 + W_2)}$$
 (b) Capacity factor =
$$\frac{t_R - t_M}{t_M}$$
 (c) Separation factor =
$$\frac{(t_R)_2 - t_M}{(t_R)_1 - t_M}$$
 (d) No. of theoretical plates =
$$16 \left(\frac{t_R}{W}\right)^2$$

65. Thermal reaction of allyl phenyl ether generates a mixture of ortho-and para-allyl phenols. The para-allyl phenol is formed via

- (a) [3,5]-sigmatropic shift
- (b) first ortho-allyl phenol is formed, which then undergoes a [3,3]-sigmatropic shift
- (c) two consecutive [3,3]-sigmatropic shifts
- (d) dissociation to generate allyl cation, which then adds at para-position

66. Of the favour vicinal diols shown below, only three are cleaved by HIO4, the diol which is NOT cleaved HIO₄ is

67. With respect to the two reactions shown below, the correct statements about their stereochemical nature is $[LDA = LiN(^{i}Pr_{2})]$

(i) Ph. H O 1. LDA P (ii) Ph O 2.
$$CH_3CH_2CH_2Br$$
 P (iii) Ph O 2. $CH_3CH_2CH_2Br$ Q

- (a) The reactions are stereoselective, because P and Q are the same
- (b) The reactions are non-stereoselective, because P and Q are the same
- (c) The reactions are stereoselective, because P and Q are diastereomers
- (d) The reactions are enantioselective, because P and Q are enantiomers
- 68. For the reactions shown below, identify the correct statement with regard to the

ajchemacademy@gmail.com

products formed.

- (a) P and Q are identical, both are optically active
- (b) P and Q are positional isomers, P is racemic and Q is optically active
- (c) P and Q are positional isomers, P is optically active and Q is racemic
- (d) P and Q are positional isomers, both are optically active
- 69. In the reaction shown below, identify the correct combination of the intermediate-P and the product-Q.

(c)
$$P =$$
 and $Q =$ OH

$$(d) \quad P = \qquad \qquad \text{and} \qquad Q = \qquad \stackrel{\text{Ph}}{\qquad} \qquad OH$$

70. In the two step reaction shown below, identify the correct combination of products 'P' and 'Q'.

www.csircoaching.com

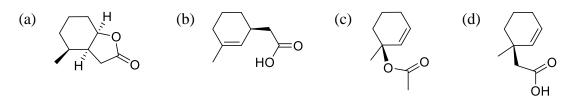
71. On the basis of Favorskii rearrangement mechanism, the ratio of the products P, Q and R given below, will be, respectively.

72. An organic compound having molecular formula C₆H₁₁BrO₂ exhibits the following peaks.

¹H-NMR :
$$\delta$$
 4.1 (2H, q, J = 7.5 Hz), 4.0 (2H, t, J = 7.5 Hz), 1.5 - 2.2 (4H, m), 1.25 (3H, t, J = 7.5 Hz)

The structure of the compound is:

$$(a) \qquad \qquad (b) \qquad \underset{O}{\text{Br}} \qquad \qquad (c) \qquad \underset{O}{\text{Br}} \qquad \qquad (d) \qquad \underset{O}{\text{O}} \qquad \qquad \\ (d) \qquad \underset{O}{\text{O$$

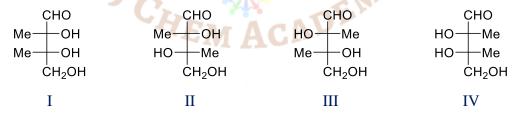

73. The product-P formed in the following three steps reaction is:

0

Ø

74. Identify the correct choice of reagents, among P, Q and R, for the transformation of norbornene into the epoxides I and II

 $\mathbf{P} = \mathbf{H}_2 \mathbf{O}_2 - \mathbf{AcOH};$ $Q = H_2O_2 - NaOH$; R = HOBr followed by aq. NaOH



(a) P gives I and Q gives II

(b) R gives I and P gives II

(c) Q gives I and R gives II

- (d) P gives I and R gives II
- 75. Reaction of ethyl acetoacetate with one equivalent of methylmagnesium bromide gives
 - (a) (b) (d) MeO (c) **BrMgO**
- 76. For the aldotetroses I-IV, the combination of TRUE statements, among P-T, is:

P = I and II are diastereomers and II and III are enantiomers

Q = I and IV are mesomers and are optically inactive

R = I and III can be interconverted by a base catalysed isomerisation

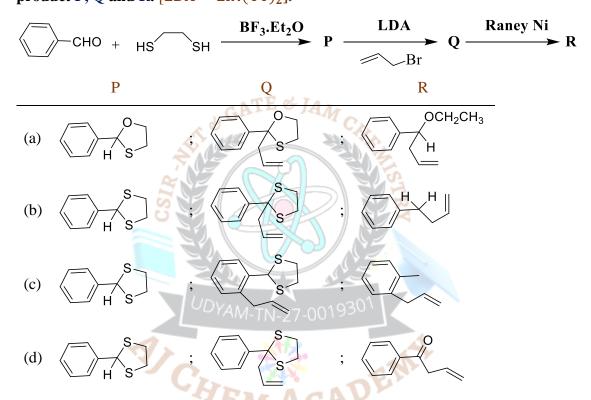
S = Only I and IV are HIO₄ cleavable

T = I and III are D-sugars and II and IV are L-sugars

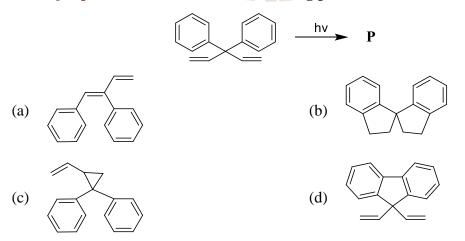
- (a) Q, R, T
- (b) P, R, T
- (c) O, S, T
- (d) P, O, S

77. Match the compounds P-S with their carbonyl stretching frequencies (cm⁻¹) I–VI in IR spectroscopy.

- Ρ. **Acetone**
- I. **1870**
- P
- Q


R

 \mathbf{S}



ethyl acetate Q. II. 1800 (a) IV IIII VI R. acetamide III. **1740** VI V II (b) Ш S. acetyl chloride IV. **1700** (c) IV Ш Π V. 1660 (d) II V VI Ш VI. 1600

78. In the following three step transformation, identify the correct combination of product P, Q and R. [LDA = $LiN(^{i}Pr)_{2}$].

79. The major product-P formed in the following photochemical reaction is:

80. Three molecular ionic states, P-R, are possible for the amino acid histidine. Identify the correct choice of pH values, respectively, for the observation of the ionic states P-R.

www.csircoaching.com

(a) P at pH 1; Q at pH 12; R at pH 7
(b) P at pH 7; Q at pH 1; R at pH 12
(c) P at pH 12; Q at pH 7; R at pH 1
(d) P at pH 12; Q at pH 1; R at pH 7

81. In the reaction shown below, identify the correct combination of the intermediate-P and the product-Q.

Q 82 – 90 contain a Statement with a <u>Reason and an Assertion</u>. for each question, choose the correct answer from the given four choices.

82. Statement : Solid carbon dioxide is called as dry ice

Reason : CO₂ sublimes when kept in open atmosphere

Assertion: Triple point of CO_2 lies above one atmosphere

- (a) Both Reason and Assertion are correct
- (b) Both reason and Assertion are wrong
- (c) Reason is correct and Assertion is wrong

(d) Reason is wrong but Assertion is correct

83. **Statement**: Entropy of pure, perfectly crystalline substance is zero at absolute

zero of temperature

: At absolute zero, molecules can have only one orientation Reason

: Statistical definition of entropy is given by the equation, $S = k \ln W$, Assertion

where W is the probability of orientation

(a) Both Reason and Assertion are correct

(b) Both reason and Assertion are wrong

(c) Reason is correct and Assertion is wrong

(d) Reason is wrong but Assertion is correct

84. **Statement**: Catalytic decomposition of ammonia on platinum takes place at

1000 °C

: Ammonia is more strongly adsorbed than hydrogen on platinum Reason

Assertion The rate law for the decomposition of ammonia on platinum is

given as, Rate = $k \frac{P_{NH_3}}{P_{H_2}}$

(a) Both Reason and Assertion are correct

(b) Both reason and Assertion are wrong

(c) Reason is correct and Assertion is wrong 001930

(d) Reason is wrong but Assertion is correct

Statement : $[CoCl_4]^{2-}$ is a regular tetrahedron but $[Cu(H_2O)_6]^{2+}$ is a distorted 85.

Reason Unsymmetrical distribution of electrons in e_g orbital leads to

distortion in $[Cu(H_2O)_6]^{2+}$

Assertion : H₂O ligands interact differently with orbitals of unequal electron

population. This leads to distortion in geometry

(a) Both Reason and Assertion are correct

(b) Both reason and Assertion are wrong

(c) Reason is correct and Assertion is wrong

(d) Reason is wrong but Assertion is correct

86. **Statement**: Schottky and Frenkel defects are stoichiometric defect occurring

in crystal lattices

Schottky defects are due to the absence of one positive and one Reason

negative ion and Frenkel defects are due to the presence of one

O

hole and one ion in an interstitial position

Assertion: The ratio of number of atoms of one kind to the number of atoms of the other kind does not correspond exactly to the ideal whole number ratio implied by the formula which leads to stoichiometric defects

(a) Both Reason and Assertion are correct

(b) Both reason and Assertion are wrong

(c) Reason is correct and Assertion is wrong

(d) Reason is wrong but Assertion is correct

87. Statement : Ga is below Al in Group IIIA, yet the atomic size of Ga is almost

the same as that of Al 💆 🔼

Reason : Lanthanide contraction

Assertion: Poor shielding of nuclear charge results in outer electrons being

more firmly held by the nucleus

(a) Both Reason and Assertion are correct

(b) Both reason and Assertion are wrong

(c) Reason is correct and Assertion is wrong

(d) Reason is wrong but Assertion is correct

88. Statement: 5-Bromopyrimidine (C₄H₃BrN₂) exhibits two prominent peaks in

the mass spectrum at m/z 158 and 160 in the ratio of 1:1

Reason : There are two basic centres in the molecule, which are protonated

Assertion : There are two isotopes of bromine, ⁷⁹Br and ⁸¹Br, that occur in the

ratio of 1:1

(a) Both Reason and Assertion are correct

(b) Both Reason and Assertion are wrong

(c) Reason is correct and Assertion is wrong

(d) Reason is wrong but Assertion is correct

89. Statement : Pyridine is more basic than pyrrole

Reason: The nitrogen in pyrrole carries a proton while the nitrogen in

pyridine does not

Assertion: Nitrogens in trigonal geometry are generally more basic than the

nitrogens in tetrahedral geometry

(a) Both Reason and Assertion are correct

- (b) Both reason and Assertion are wrong
- (c) Reason is correct and Assertion is wrong
- (d) Reason is wrong but Assertion is correct
- 90. Statement : Replacement of CH₃ with CF₃ decreases the rate decreases the rate of reaction-I, but increases the rate of reaction-II

Assertion : Being an electron withdrawing group, CF_3 destabilizes the transition state in $S_N 1$ reaction, but stabilizes the transition state in $S_N 2$ reaction

- (a) Both Reason and Assertion are correct
- (b) Both reason and Assertion are wrong
- (c) Reason is correct and Assertion is wrong
- (d) Reason is wrong but Assertion is correct

Answer Key

Q.No	Ans	Q.No	Ans	Q.No	Ans	Q.No	Ans
1.	d	26.	b	51.	С	76.	b
2.	С	27.	b	52.	d	77.	С
3.	d	28.	С	53.	С	78.	b
4.	С	29.	С	54.	d	79.	С
5.	С	30.	С	55.	а	80.	а
6.	d	31.	b	56.	а	81.	b
7.	а	32.	d	57.	b	82.	а
8.	b	33.	b	58.	а	83.	а

www.csircoaching.com

9.	С	34.	d		59.	d	84.	а
10.	d	35.	С		60.	b	85.	а
11.	b	36.	b		61.	d	86.	С
12.	b	37.	b		62.	d	87.	d
13.	C	38.	b		63.	b	88.	d
14.	С	39.	а		64.	а	89.	b
15.	а	40.	d		65.	С	90.	а
16.	b	41.	С		66.	а		
17.	b	42.	С		67.	а		
18.	d	43.	С		68.	d		
19.	b	44.	b		69.	b		
20.	d	45.	d		70.	С		
21.	а	46.	b	\.	71.	d		
22.	b	47.	С	ATE	72.	С		
23.	d	48.	а	Gir	73.	d		
24.	С	49.	С	£8	74.	d		
25.	d	50.	b		75.	а		

- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.
- © இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜே கெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்பு செய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக்குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப் பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

