

GATE – 2010 – Chemistry

www.csircoaching.com

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ University Chemistry Entrance (PhD | PG)
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching

Features							
\succ 300 ++ Live Classes	A Well-Defined Curriculum						
\succ 200 ++ Concept Wise Tests	A Strong Subject Foundation						
\succ 50 ++ Chapter Wise Tests	> A Refined Learning Methodology						
\succ 50 ++ Model Tests	> Updated Study materials						
> 2000 ++ Problem Discussions	➢ Freshers Can easily understand						
Recorded Videos	Question banks						

<u>Q.1 – Q.25 Multiple Choice Question (MCQ), carry OE mark each (for</u> <u>each wrong answer: – 1/3).</u>

- 1. The Lewis acidity of BF_3 is less than BCl_3 even though fluorine is more electronegative than chlorine. It is due to
 - (a) stronger $2p(B)-2p(F) \sigma$ -bonding
- (b) stronger $2p(B)-2p(F) \pi$ -bonding

1

- (c) stronger $2p(B)-3p(Cl) \sigma$ -bonding
- (d) stronger $2p(B)-3p(Cl) \pi$ -bonding
- 2. Pyroxenes are a class of silicate minerals, which exhibit a polymeric chain structure, as shown below, its simplest repeat unit is

(a) $[SiO_4]^{4-}$

- 3. Among the following pentachlorides the one which does not exist due to the 'inert-pair effect' is
 (a) PCl₅
 (b) BiCl₅
 (c) SbCl₅
 (d) AsCl₅
- 4. Band theory predicts that magnesium is an insulator. However, in practice it acts as a conductor due to A
 - (a) presence of filled 3s orbital(b) overlap of filled 2p and filled 3s orbital(c) overlap of filled 3s and empty 3p orbital(d) presence of unfilled 3p orbital
- 5. The number of 'framework electron pairs' present in the borane cluster $[B_{12}H_{12}]^{2-}$ is:
 - (a) 10 (b) 11 (c) 12 (d) 13
- The reaction between [PdCl₄]²⁻ and C₂H₄ produces a new compound. Compare to free C₂H₄, the C–C bond order of the product is:
 - (a) between 1 and 2(b) less than 1(c) unaltered(d) greater than 2
- 7. Among the following pair of metal ions present in Nature, the first one functions as an electron-transfer agent and the second one catalyzes the hydrolysis reactions. The correct pair is

(d) Ca and Cu (a) Fe and Zn (b) Mg and Fe (c) Co and Mo

8. Structurally nickelocene is similar to ferrocene. Nickelocene attains stability due to

(a) a monocation

n (b) a dication

(c) a monoanion

(d) a dianion

2

9. The absolute configurations for compounds I and II, respectively are

10. In the given reaction, the major product [X] is

- 11. Among the following, a pair of resolvable configurational enantiomers is given by
 (a) cis-1,2-dimethylcyclohexane
 (b) cis-1,3-dimethylcyclohexane
 (c) cis-1,4-dimethylcyclohexane
 (d) trans-1,3-dimethylcyclohexane
 - (c) cis-1,4-dimetry/cyclonexale (d) trais-1,5-dimetry/cyclonexa
- 12. In the given reaction, the major product [X] is:

13. The decreasing order of isoelectric point for the following α -amino acids is

(1)	(11)	(111)	
Lysine	Alanine	Glutamic acid	

- (a) I > II > III
 (b) II > I > III
 (c) III > I > II
 (d) I > III > II

 14. The decreasing order of the reactivity of the following compounds towards
 - electrophiles is

Tiruchirappalli – 620 024

www.csircoaching.com

ajchemacademy@gmail.com

(a)
$$II > I > III$$
 (b) $II > III > I$ (c) $III > I > II$ (d) $I > II > III$

15. In the given reaction, the major product [X] is

16. The decreasing order of acidity of marked H of the following molecules is

	(a) φ_1 is normalized	d but not orthogonal t	ο φ ₂					
	(b) φ_1 is normalized but not orthogonal to φ_2							
	(c) φ_2 is normalized and orthogonal to φ_1 (d) φ_2 is neither normalized nor orthogonal to φ_1							
22.	The bond order of C_2 molecule is							
	(a) 0	- (b) 1	(c) 2	(d) 3				
23.	Sulfur can exist in four phases. The possible number of triple points is							
	(a) 1	(b) 2	(c) 3	(d) 4				
24.	The standard redu	ction potentials at 29	98K for single electro	des are given below:				
	Electrode Electrode Potential (volt)							
	Mg ²⁺ /Mg	GATE	-2.34	_				
	Zn ²⁺ /Zn	AS ME	- 0.76					
	Fe ²⁺ /Fe		- 0.44					
	From this we can in	nfer that						
	(a) Zn can reduce be	oth Mg ²⁺ and Fe ²⁺	(b) Fe can reduce t	both Mg^{2+} and Zn^{2+}				
	(c) Mg can reduce b	oth Zn ²⁺ and Fe ²⁺	(d) Mg can reduce	Zn ²⁺ but not Fe ²⁺				
25.	For the pair of read	ctions given below						
	(i) $N_{2(g)} + 3H_{2(g)} \leftrightarrow X_{p_1/D} 2NH_{3(g)} - 27-0019301$							
	(ii) $\frac{1}{2}N_{2(g)} + \frac{3}{2}H$	$[2_{(g)} \longleftrightarrow^{K_{P2}} NH_{3(g)}]$	3. Ar					
	If at a particular temperature, K_{P1} and K_{P2} are the equilibrium constants for							
	reactions (i) and (ii) respectively, then	ACTA					
	(a) $K_{P1} = 2K_{P2}$	(b) $K_{P1} = K_{P2}^2$	(c) $2K_{P1} = K_{P2}$	(d) $K_{P1}^2 = K_{P2}$				
	<u>Q.26 – Q.55 Mul</u>	tiple Choice Que	estion (MCQ), car	ry TWO marks each				
	(for each wrong	<u> ; answer: – 2/3).</u>						
26.	According to VSEI	PR model , the shape	of [XeOF ₅] ⁻ is					
	(a) Octahedral		(b) Trigonal bipy	ramidal				
	(c) square pyramida	1	(d) pentagonal me	onopyramidal				
27.	The number of unpaired electron(s) present in the species $[Fe(H_2O)_5(NO)]^2$							
	which is formed du	ring 'brown ring tes	st' is:					
	(a) 2	(b) 3	(c) 4	(d) 5				
28.	Fe_3O_4 and Co_3O_4	are metal oxides	having spinel struc	ture. Considering their				
	CFSEs, the correct statement regarding their structure is							
Tiruc	hirappalli – 620 024	www.csircoach	ing.com	ajchemacademy@gmail.com				
	0							

5

- (a) both have normal spinel structure(b) both have inverse spinel structure
- (c) Fe_3O_4 has normal and Co_3O_4 has inverse spinel structure
- (d) Fe_3O_4 has inverse and Co_3O_4 has normal spinel structure
- 29. The mechanism of the reaction between $[Fe(CN)_6]^{4-}$ and $[Fe(bpy)_3]^{3-}$ is
 - (a) outer-sphere electron-transfer (b) inner-sphere electron-transfer
 - (c) self-exchange reaction (d) ligand-exchange followed by electron transfer
- **30.** The d-d absorption band of $[Fe(H_2O)_6]^{2+}$ is split due to
 - (a) presence of octahedral geometry (b) static Jahn-Teller distortion
 - (c) dynamic Jahn-Teller distortion (d) presence of trigonal bipyramidal geometry
- 31. The crystal-field symbol for the ground-state of $[Mn(CN)_6]^{4-}$ is

(a)
$${}^{2}T_{2g}$$
 (b) ${}^{1}A_{1g}$ (c) ${}^{5}E_{g}$ (d) ${}^{6}A_{1g}$

32. In the following given reactions, the reagent/conditions X and Y are

(c)
$$X = NH_4F$$
; $Y = HCl$
 $UDYAM_TN_27_00$ (d) $X = CF_3SO_3H$; $Y = H_2SO_4$

- 33. [CoCl₄]²⁻ is a blue coloured complex. Controlled-treatment of this complex with water generates two isomeric light pink coloured complexes of composition [Co(H₂O)₄Cl₂]. Identify the correct point groups for [CoCl₄]²⁻ and two isomeric complexes [Co(H₂O)₄Cl₂].
 - (a) D_{4h} and $(C_{2v}$ and $C_{2h})$
 - (c) D_{4h} and $(C_{2v}$ and $D_{4h})$

- (b) T_d and (C_{2v} and D_{4h})
 (d) T_d and (C_{2v} and C_{4v})
- 34. In the given reaction, the major product [X] is:

ajchemacademy@gmail.com

$\mathrm{GATE}-2010-\mathrm{CY}$

36. In the following reaction sequence, the major product [X] is

37. In the given reaction, the major products, [X] and [Y], respectively, are

38. In the given reaction, the major product [X] is

Tiruchirappalli – 620 024

www.csircoaching.com

ajchemacademy@gmail.com

39. In the given reaction sequence, the major products, [X] and [Y] respectively, are

- 40. The change in entropy when two moles of Argon gas are heated at constant volume from 300 K to 500 K is:
 (a) -12.74 J K⁻¹ mole⁻¹
 (b) -6.37 J K⁻¹ mole⁻¹
 (c) 6.37 J K⁻¹ mole⁻¹
 (d) 12.74 J K⁻¹ mole⁻¹
- 41. At any temperature T, the fugacity coefficient (γ) is given by $\ln \gamma = \int_{0}^{p} \frac{Z-1}{P'} dP'$ where Z is the compressibility factor. The fugacity coefficient of a real gas governed by equations of state, P(V-b) = RT with 'b' a constant is given by (a) $\frac{RT}{bP}$ (b) $e^{\frac{RT}{bP}}$ (c) $\frac{bP}{BT}$ (d) $e^{\frac{bP}{RT}}$
- 42. The specific rate constant of decomposition of a compound is represented by $\ln k = 5.0 \frac{12000}{T}$. The activation energy of decomposition for this compound at 300 K is
 - (a) 24 kcal/mole (b) 12 kcal/mole (c) 24 cal/mole (d) 12 cal/mole
- 43. The commutator $[x^3, p_x]$ is equal to

(a)
$$-\frac{3hx^2}{2\pi i}$$
 (b) $\frac{hx}{2\pi i}$ (c) $\frac{hx^2}{2\pi i}$ (d) $\frac{3hx^2}{2\pi i}$

44. An electron of mass 'm' is confined to a one-dimensional box of length 'b'. If it makes a radiative transition from second excited state to the ground state, the frequency of the photon emitted is

(a)
$$\frac{9h}{8mb^2}$$
 (b) $\frac{3h}{8mb^2}$ (c) $\frac{h}{mb^2}$ (d) $\frac{2h}{mb^2}$

45. The point group of CIF₃ molecule and its corresponding number of irreducible representation are respectively,

www.csircoaching.com

$\mathrm{GATE} - 2010 - \mathrm{CY}$

In the μ vs T diagram for different phases of the same substance at one atmospheric pressure, the lines A, B and C compound to

54. Based on the above diagram.

- (a) A represents the change in chemical potential as a function of temperature for the solid phase, B for the liquid and C for the gas
- (b) A represents the change in chemical potential as a function of temperature for the liquid phase, B for the gas and C for the solid
- (c) A represents the change in chemical potential as a function of temperature for the gas phase, B for the liquid and C for the solid
- (d) A represents the change in chemical potential as a function of temperature for the gas phase, B for the solid and C for the liquid

55. From the same diagram

- (a) D represents boiling point; E sublimation point and F melting point
- (b) E represents boiling point; D sublimation point and F melting point
- (c) E represents melting point; F sublimation point and D boiling point
- (d) D represents melting point; F boiling point and E sublimation point

Q.No	Ans		Q.No	Ans		Q.No	Ans		Q.No	Ans
1.	b		16.	С		31.	а		46.	b
2.	b		17.	С		32.	b		47.	b
3.	b		18.	С		33.	b		48.	d
4.	С		19.	b	AM-TN-1	34.	b		49.	d
5.	d		20.	d		35.	а		50.	b
6.	а	*	21.	С	ž	36.	С		51.	b
7.	а		22.	С	-21	37.	а	2	52.	С
8.	b		23.	d	FRE	38.	b		53.	С
9.	b		24.	С		39.	С		54.	d
10.	С		25.	С		40.	С		55.	d
11.	d		26.	d	13	41.	d			
12.	b		27.	b		42.	а			
13.	а		28.	d		43.	а			
14.	d		29.	а		44.	С			
15.	а		30.	С		45.	b			

Answer Key

- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.
- © இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜே கெம் அகாடமியின் முன் அனுமதியின்றி

எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்பு செய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது

© இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக்குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப் பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

Tiruchirappalli – 620 024

