AJ Chem Academy

Reg.No: UDYAM-TN-27-0019301

GATE – 2015 – Chemistry

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ University Chemistry Entrance (PhD | PG)
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching
- ✓ PG | Polytechnic | College TRB Chemistry

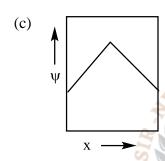
www.csircoaching.com

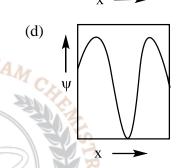
Features

- ➤ 300 ++ Live Classes
- > 200 ++ Concept Wise Tests
- ➤ 50 ++ Chapter Wise Tests
- > 50 ++ Model Tests
- ➤ 2000 ++ Problem Discussions
- Recorded Videos

- > A Well-Defined Curriculum
- > A Strong Subject Foundation
- ➤ A Refined Learning Methodology
- > Updated Study materials
- > Freshers Can easily understand
- Question banks

ajchemacademy@gmail.com



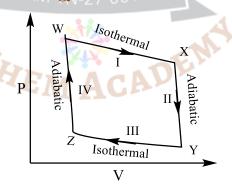


Q.1 – Q.25 Multiple Choice Question (MCQ) & NAT, carry ONE mark each (for each wrong answer: – 1/3). (** No Negative Marks for NAT)

1. Which one of the following plots represents an acceptable wavefunction?

(a) **1 1 1**

2. When the operator, $-\hbar^2 d^2/dx^2$, operates on the function e^{-ikx} , the result is


(a)
$$k^2\hbar^2e^{-ikx}$$

(b)
$$ik^2\hbar^2e^{-ikx}$$

(c)
$$i\hbar^2 e^{-ikx}$$

(d)
$$\hbar^2 e^{-ikx}$$

3. From the given Carnot cycle undergone by an ideal gas, identify the processes in which the change in internal energy is NON-ZERO.

- (a) I and II
- (b) II and IV
- (c) II and III
- (d) I and IV

4. For an ideal gas with molar mass-M, the molar translational entropy at a given temperature is proportional to

- (a) $M^{3/2}$
- (b) $M^{1/2}$

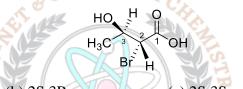
- (c) e^{M}
- $(d) \ln(M)$

5. Which one of the following defines the absolute temperature of a system?

- (a) $\left(\frac{\partial U}{\partial S}\right)_V$
- (b) $\left(\frac{\partial A}{\partial S}\right)_V$
- (c) $\left(\frac{\partial H}{\partial S}\right)_{V}$
- $(d) \left(\frac{\partial G}{\partial S}\right)_{V}$

6. Which of the following properties are characteristics of an ideal solution?

	(i) $(\Delta_{mix}G)_{T,P}$ is negative	(ii) $(\Delta_{mix}S)_{T,P}$ i	is postiive		
	(iii) $(\Delta_{mix}V)_{T,P}$ is positive	(iv) $(\Delta_{mix}H)_{T,P}$ is negative			
	(a) (i) and (iv) (b) (i) and (ii)	(c) (i) and (iii) (c	d) (iii) and (iv)		
7.	The expression for the equilibrium co	onstant (K _{eq}) for the en	zyme catalyzed		
	reaction given below, is				
	$E + S = \frac{k_1}{k_2}$	ES k_3 P +	E		
	(a) $\frac{k_1k_3}{k_2k_4}$ (b) $\frac{k_1k_2}{k_3k_4}$	(c) $\frac{k_2k_3}{k_1k_4}$	$(d)\frac{k_1k_4}{k_2k_3}$		
8.	Given the E ⁰ values for the following reach	ction sequence,			
	$Mn^{6+} \xrightarrow{1.28 \text{ V}} Mn^{5+} \xrightarrow{2.9 \text{ V}} Mn$	$^{4+}$ $\xrightarrow{0.96 \text{ V}}$ Mn^{3+} $\xrightarrow{1.5 \text{ V}}$	• Mn ²⁺		
	the computed value of E^0 for $Mn^{6+} \rightarrow M$	In ²⁺ (in volts) is			
9.	The absorption spectrum of [Ti(H ₂ O) ₆] ³	⁺ in solution comprises of a	maximum with		
	a shoulder. The reason for the shoulder is	S			
	(a) ligand-to-metal charge transfer	(b) metal-to-ligand charge tr	ansfer		
	(c) Jahn-Teller distortion	(d) nephelauxetic effect			
10.	The ease of formation of the adduct, N	\mathbf{H}_3 . \mathbf{BX}_3 (where $\mathbf{X} = \mathbf{F}$, \mathbf{Cl} ,	Br) follows the		
	order		(iii) (d) (iii) and (iv) (a) for the enzyme catalyzed (b) for the enzyme catalyzed (c) $\frac{3}{4}$ (d) $\frac{k_1k_4}{k_2k_3}$ (d) $\frac{k_1k_4}{k_2k_3}$ (e) $\frac{3}{4}$ (d) $\frac{k_1k_4}{k_2k_3}$ (e) is comprises of a maximum with digand charge transfer setic effect (a) $\frac{3}{4}$ (b) is (c) $\frac{3}{4}$ (d) $\frac{k_1k_4}{k_2k_3}$ (e) $\frac{3}{4}$ (d) $\frac{3}{4}$ (e) is comprises of a maximum with digand charge transfer setic effect (a) $\frac{3}{4}$ (b) is (c) $\frac{3}{4}$ (d) $\frac{3}{4}$ (e) $\frac{3}{4}$ (d) $\frac{3}{4}$ (e) $\frac{3}{4}$ (d) $\frac{3}{4}$ (e) $\frac{3}{4}$ (e) $\frac{3}{4}$ (f) $\frac{3}{4}$ (g) $\frac{3}{4}$ (h) $$		
	(a) $BBr_3 < BCl_3 < BF_3$	(b) $BCl_3 < BF_3$	< BBr ₃		
	(c) $BF_3 < BCl_3 < BBr_3$	$(d) BBr_3 < BF_3$	< BCl ₃		
11.	An efficient catalyst for hydrogenation	of alkenes is [Rh(PPh ₃);	3Cl] . However,		
	[Ir(PPh ₃) ₃ Cl] does not catalyze this reaction, because				
	(a) PPh ₃ binds stronger to Ir than to Rh	(b) Cl binds stronger t	o Ir than to Rh		
	(c) PPh ₃ binds stronger to Rh than to Ir	(d) Cl binds stronger t	o Rh than to Ir		
12.	Among the given pH values, the O_2 bine	ding efficiency of hemoglol	bin is maximum		
	at				
	(a) 6.8 (b) 7.0	(c) 7.2	, ,		
13.	The intense red color of $[Fe(bpy)_3]^{2+}$, (by	opy = 2,2'-bipyridine) is du	e to		
	(a) metal-to-ligand charge transfer (MLCT)	(b) ligand-to-metal charge	transfer (LMCT)		
	(c) d-d transition	(d) inter-valence charge tra	ansfer (IVCT)		
14.	The compound with planar geometry is				
	(a) $N(t-Bu)_3$ (b) NPh_3	(c) NF ₃	(d) $N(SiH_3)_3$		


15. The electrical conductivity of a metal

- (a) increases with increasing temperature
- (b) decreases with increasing temperature
- (c) is independent of temperature
- (d) shows oscillatory behaviour with temperature

16. Which one of the following statements is **INCORRECT**?

- (a) Frenkel defect is a cation vacancy and a cation interstitial
- (b) Frenkel defect is an anion vacancy and a cation interstitial
- (c) Density of a solid remains unchanged in case of Frenkel defects
- (d) Density of a solid decreases in case of Schottky defects

17. The absolute configuration of C2 and C3 in the following compound is

- (a) 2R,3S
- (b) 2S,3R
- (c) 2S,3S
- (d) 2R,3R

18. Among the following compounds, the one that is non-aromatic, is

(d)

19. The correct order of reactivity of p-halonitrobenzenes in the following reaction is,

(X = F, CI, Br, I)

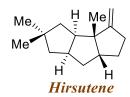
p-fluoronitrobenzene

p-chloronitrobenzene

p -bromonitrobenzene

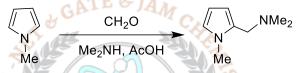
p -iodonitrobenzene

Ш


(a)
$$II > IV > I > III$$
 (b) $I > II > III > IV$ (c) $IV > III > II > I$ (d) $III > I > IV > II$

Tollen's test is NEGATIVE for 20.

- (a) mannose
- (b) maltose
- (c) glucose
- (d) sucrose


21. The compound given below is a

- (a) sesterterpene
- (b) monoterpene
- (c) sesquiterpene
- (d) triterpene
- 22. Amongst the following the compound that DOES NOT act as a diene in Diels-Alder reaction is
 - (a)
- (b)
- (c)
- (d) Me

23. The following conversion is an example of

(a) Arndt-Eistert homologation

(b) Mannich reaction

(c) Michael addition

(d) Chichibabin amination reaction

(d)

The mass spectrum of a dihalo-compound shows peaks with relative intensities of 24. 1:2:1 corresponding to M, M+2 and M+4 (M is the mass of the molecular ion), respectively. The compound is

(c)

- (a) Br
- IN-27-00 Br (b)
- Me
- **25.** Reaction of benzaldehyde and p-methylbenzaldehyde under McMurry coupling conditions (TiCl₃ and LiAlH₄) gives a mixture of alkenes. The number of alkenes formed is _

Q.26 - Q.55 MCQ & NAT, carry TWO marks each (for each wrong answer: - 2/3). (** No Negative Marks for NAT)

- **26.** The difference in the ground state energies (kJ/mol) of an electron in onedimensional boxes of lengths 0.2 nm and 2 nm is _
- The mean ionic activity coefficient of 0.001 molal $\mathbf{ZnSO}_{4(aq)}$ at 298 K according **27.** to the Debye-Huckel limiting law is

(Debve-Huckel constant is 0.509 $molal^{-1/2}$)

28. The process given below follows the Langmuir adsorption isotherm

$$A_{2(g)} = \frac{k_1}{k_{-1}} 2A_{ads}$$

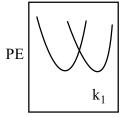
If θ denotes the surface coverage and P denotes the pressure, the slope of the plot of $1/\theta$ versus $1/\sqrt{P}$ is

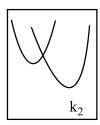
- (a) $1/(K_{eq})^2$
- (b) 1/K_{en}
- $(c) 1/K_{eq}$
- (d) $1/(K_{eq})^{1/2}$

For a gas phase unimolecular reaction at temperature 298 K, with a pre-**29.** exponential factor of 2. 17 \times 10¹³ s⁻¹, the entropy of activation (JK⁻¹mol⁻¹) is ____

A liquid has vapor pressure of 2.02×10^3 Nm⁻² at 293 K and heat of vaporization **30.** of 41 KJ mol⁻¹. The boiling point of the liquid (in Kelvin) is ___

The rotational partition function of a diatomic molecule with energy levels 31. corresponding to J = 0 and 1, is (where, ε is a constant)


- (a) $1 + e^{-2\varepsilon}$
- (b) $1 + 3e^{-2\varepsilon}$ (c) $1 + e^{-3\varepsilon}$
- (d) $1 + 3e^{-3\epsilon}$


The internal energy of an ideal gas follows the equation U = 3.5 PV + k, where k **32.** is a constant. The gas expands from an initial volume of 0.25 m³ to a final volume of 0.86 m³. If the initial pressure is 5 Nm⁻², the change in internal energy (in joules) is (given PV^{1.3} = constant)


The solubility product of $AgBr_{(s)}$ is 5×10^{-13} at 298 K. If the standard reduction 33. potential of the half-cell, $E^0_{Ag|AgBr_{(s)}|Br^-}$ is 0.07 V, the standard reduction potential, E_{Ag⁺|Ag}(in volts) is

One mole of a substance is heated from 300 K to 400 K at constant pressure. The 34. C_P of the substance is given by, $C_P(J\ K^{-1}\ mol^{-1})=5+0.1\ T$. The change in entropy, in $[K^{-1} \text{ mol}^{-1}]$, of the substance is

35. The potential energy (PE) versus reaction coordinate diagrams for electron transfer reactions with rate constants k₁, k₂ and k₃, are given below. The inreasing order of the rate constants is

Reaction Coordinate

0

Ø

	(a) $k_2 < k_3 <$	k_1	(b) $k_2 < k_1$	< k ₃				
	(c) $k_3 < k_2 <$	$\mathbf{k_1}$	$ (d) k_3 < k_1 $	< k ₂				
36.	The distance between two successive (110) planes in a simple cubic lattice with							
	lattice parameter 'a	' is						
	(a) $\sqrt{2}$ a	(b) $\sqrt{3}$ a	(c) $2\sqrt{2}$ a	$(d)\frac{a}{\sqrt{2}}$				
37.	The percent trans	mittance of 8×10^{-3}	⁻⁵ M solution of KMn	0 ₄ is 39.8 when				
measured at 510 nm in a cell of path length of 1 cm. The absorban								
molar extinction coefficient (in M ⁻¹ cm ⁻¹) of this solution are, respectively								
	(a) 0.30 and 4500	(b) 0.35 and 4800	(c) 0.4 and 5000	(d) 0.48 and 5200				
38.	The value of 'g' an	d the number of sign	nals observed for the	reference standard,				
diphenylpicrylhydrazyl (DPPH), in the solid state ESR spectrum are, respecti								
	(a) 2.0036 and 1	(b) 2.0036 and 3	(c) 2.2416 and 1	(d) 2.2416 and 3				
39.	Ammonolysis of S ₂ C	l ₂ in an inert solvent	gives					
	(a) S_2N_2	(b) S ₂ N ₂ Cl ₂	(c) $S_2N_2H_4$	(d) S_4N_4				
40.	The complexes K ₂ [N	$[\mathrm{IiF}_6]$ and $\mathrm{K}_3[\mathrm{CoF}_6]$ ar	e					
	(a) both paramagnetic		(b) both diamagnetic					
	(c) paramagnetic and	diamagnetic	(d) diamagnetic and paramagnetic					
41.	The point group of IF ₇ is DYAM-TN-27-001930							
	(a) D _{6h}	(b) D _{5h}	(c) C _{6V}	(d) C _{5V}				
42.	When one CO grou	p is replaced by PPh	$_3$ in [Cr(CO) ₆], which	one of the following				
	statement is TRUE?							
	(a) The Cr-C bond len	ngth increases and CO	bond length decreases					
	(b) The Cr-C bond lea	ngth decreases and CO	bond length decreases					
	(c) The Cr-C bond length decreases and CO bond length increases							
	(d) The Cr-C bond length increases and CO bond length increases							
43.	Identify X in the reaction, $[Pt(NH_3)_4]^{2+} + 2HCl \rightarrow X$							
	(a) cis -[PtCl ₂ (NH ₃) ₂	.]	(b) trans-[PtCl ₂ (NF	$[H_3)_2]$				
	(c) $[PtCl(NH_3)_3]^+$		(d) $[PtCl_3(NH_3)_3]^-$					
44.	Identify the function of hemocyanin and the metal responsible for it							
	(a) O ₂ transport and Fe (b) O ₂ transport and Cu							
	(c) electron transport and Fe (d) electron transport and Cu							
45	The limiting curren	nt (in 11A) from the	reduction of $3 \times 10^{\circ}$	-4 M Dh ²⁺ using a				

dropping mercury electrode (DMF) with characteristics, $m = 3.0 \text{ mg s}^{-1}$ and t =3s, is _____ (diffusion coefficient of $Pb^{2+} = 1.2 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$)

The number of possible stereoisomers obtained in the following reaction is _____ **46.**

47. The major product formed in the following reaction is

(a) (b) (d) (c) ÓН ÓН

48. The most suitable reagent(s) to effect the following transformed is

The major product formed in the following reaction is

(a) N₂H₄, KOH, heat

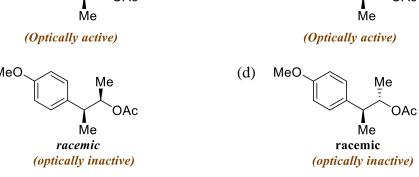
49.

(c) LiAlH₄

(d) Na, liq. NH₃

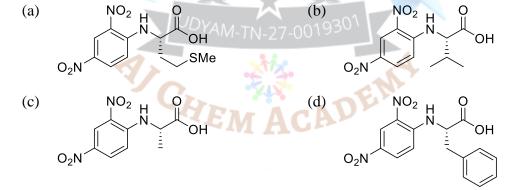
 $^{\prime\prime}N^3$ (a) HO_{\prime} (b) (d) (c) HO, $^{\prime}N_{3}$

50. Solvolysis of the given optically active compound gives, mainly



(b)

MeO


Ме

OAc

51. The major product formed in the following reaction is

52. The tetrapeptide, Ala-Val-Phe-Met, on reaction with Sanger's reagent, followed by hydrolysis gives

53. The major product formed in the following reaction is

Me Me
$$\Delta$$

$$(c) \qquad \underset{\mathsf{Me}}{\overset{\mathsf{Me}}{\bigvee}} \qquad \qquad (d) \qquad \underset{\mathsf{Me}}{\overset{\mathsf{Me}}{\bigvee}} \qquad \qquad \\$$

The Beckmann rearrangement of a bromoacetophenone oxime (C_8H_8BrNO) gives a **54.** major product having the following

¹H-NMR : 9.89 (s, 1H), 7.88 (s, 1H), 7.45 (d, 1H,
$$J = 7.2 \text{ Hz}$$
), 7.17 (m, 1H), 7.12 (d, 1H, $J = 7.0 \text{ Hz}$), 2.06 (s, 3H)

The structure of the product is

Br

The major products, K and L formed in the following reactions are 55.

(c)
$$K = H_3C$$
 ; $L = H_3C$

(d)
$$K = H_3C$$
 ; $L = H_3C$

Answer Key

Q.No	Ans		Q.No	Ans		Q.No	Ans
1.	d		21.	С		41.	b
2.	а		22.	b		42.	С
3.	b		23.	b		43.	b
4.	d		24.	a		44.	b
5.	а		25.	6		45.	3.5 to 3.8
6.	b		26.	896 to 900		46.	8
7.	а		27.	0.73 to 0.75		47.	d
8.	1.6 to 1.7		28.	d		48.	а
9.	С		29.	10.2 to 10.6		49.	d
10.	С		30.	380 to 385		50.	С
11.	а		31.	b		51.	d
12.	d		32.	-1.38 to -1.33		52.	С
13.	а	. 4	33.	0.79 to 0.82	8	53.	b
14.	d	**	34.	11.3 to 11.5	Z	54.	а
15.	b	A	35.	d	S	55.	b
16.	b	IS	36.	d	R		
17.	d	707 D	37.	С	Y		
18.	а		38.	a	1		
19.	b	7	39.	d	/		
20.	d	7	40.	d			

- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.
- © இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜே கெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்பு செய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக்குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப் பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

www.csircoaching.com

