

Reg.No: UDYAM-TN-27-0019301

CSIR-NET | GATE | JAM & CUET-PG | TRB | BARC Chemistry Coaching

GATE – 2019 – Chemistry

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ University Chemistry Entrance (PhD | PG)
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching

www.csircoaching.com

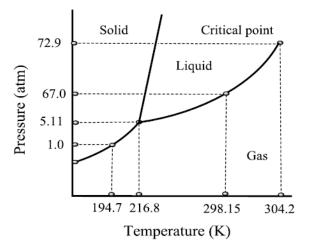
Features

- \succ 300 ++ Live Classes
- > 200 ++ Concept Wise Tests
- \succ 50 ++ Chapter Wise Tests
- \succ 50 ++ Model Tests
- > 2000 ++ Problem Discussions
- ➢ Recorded Videos

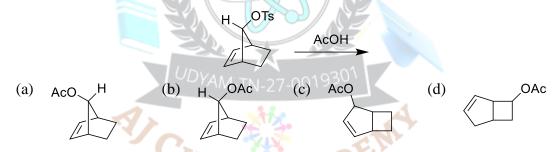
- > A Well-Defined Curriculum
- > A Strong Subject Foundation
- > A Refined Learning Methodology
- Updated Study materials
- ➢ Freshers Can easily understand
- Question banks

GATE-2019-CY

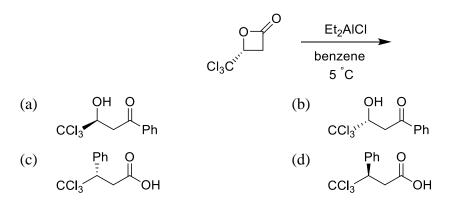
	<u>Q.1 – Q.13 Multiple Choice Question (MCQ), carry ONE mark each</u>										
<u>(for each wrong answer: – 1/3).</u>											
1. The INCORRECT statement about the solid-state structure of CsCl and											
	(a) Cations in both solids exhibit coordination number 8										
	(b) CsCl has bcc type structure and CaF_2 has cubic close pack structure										
	(c) Radius ratio for Cs/Cl and Ca/F is 0.93 and 0.73, respectively										
	(d) Both exhibit close pack structure										
2.	The INCORRECT statement about the interhalogen compound ICl ₃ is:										
	(a) It exists as a dimer										
	(b) Geometry around the iodine is tetrahedral in solid-state										
	(c) It decomposes as ICl and Cl ₂ in gas-phase										
	(d) Liquid ICl ₃ conducts electricity										
3.	Among the following carbon allotropes, the one with discrete molecular structure is										
	(a) Diamond (b) α -Graphite (c) β -Graphite (d) Fullerene										
4.	The INCORRECT statement about the silicones is:										
	(a) They are thermally unstable because of the Si-C bond										
	(b) They are insoluble in water										
	(c) They are organosilicon polymers _{IN-27-0019301}										
	(d) They have stable silica-like skeleton (-Si-O-Si-O-Si-)										
5.	The Δ_0 value of $[Ni(H_2O)_6]^{2+}$ is 8500 cm ⁻¹ . The Δ_0 values for $[NiCl_6]^{4-}$ and										
	$[Ni(NH_3)_6]^{2+}$ compared to $[Ni(H_2O)_6]^{2+}$ are										
	(a) higher and lower, respectively (b) lower and higher, respectively										
	(c) higher in both complex ions (d) lower in both complex ions										
6.	In Freundlich isotherm, a linear relationship is obtained in the plot of										
	$(\theta = surface \ coverage \ and \ p = partial \ pressure \ of \ the \ gas)$										
	(a) θ vs p (b) $\ln(\theta)$ vs ln (p) (c) $\ln(\theta)$ vs p (d) θ vs ln (p)										
7.	Micelle formation is accompanied by the										
	(a) decrease in overall entropy due to ordering										
	(b) increase in overall entropy mostly due to increase in solvent entropy										
	(c) increase in overall entropy mostly due to increase in solute entropy										
	(d) increase in overall entropy and decrease in enthalpy										


8. Consider the following phase diagram of CO_2 (not to scale). At equilibrium, the

ajchemacademy@gmail.com

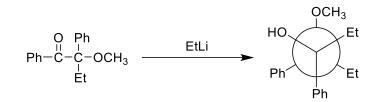

1

INCORRECT statement is:


- (a) At 200 K, on increasing the pressure from 1 to 50 atm, CO_2 gas condenses to liquid
- (b) It is not possible to obtain liquid CO_2 from gaseous CO_2 below 5.11 atm
- (c) Both liquid and gas phase of CO_2 coexist at 298.15 K and 67 atm
- (d) With increasing pressure, the melting point of solid CO_2 increases
- 9. The major product formed in the following reaction is,

10. The Woodward-Hoffmann condition to bring out the following transformation is

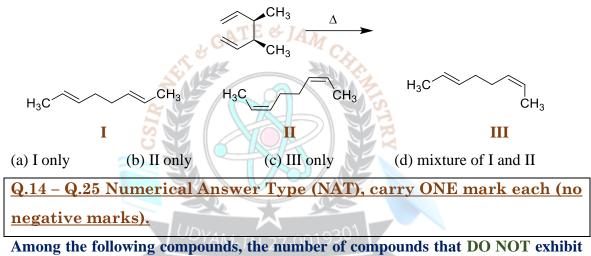
- (a) Δ , conrotatory (b) Δ , disrotatory (c) hv, disrotatory (d) hv, conrotatory
- 11. The major product formed in the following reaction is



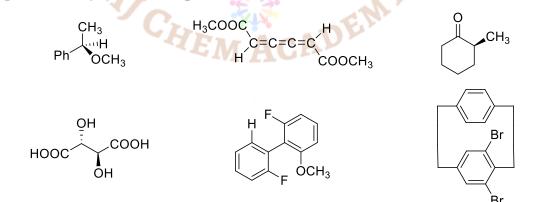
ajchemacademy@gmail.com

12. In the following reaction, the stereochemistry of the major product is predicted by the

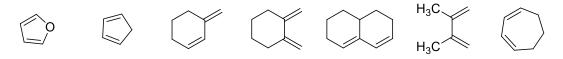
(a) Cram's model


(b) Cram's chelation model

3

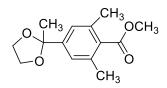

(c) Felkin model

(d) Felkin-Anh model


13. The **product**(s) formed in the following reaction is (are)

14. optical activity at room temperature is

15. The number of following diene(s) that undergo Diels-Alder reaction with methyl acrylate is ____


The number of ¹H-NMR signals observed for the following compound is _ 16.

Tiruchirappalli – 620 024

www.csircoaching.com \bigoplus

ajchemacademy@gmail.com

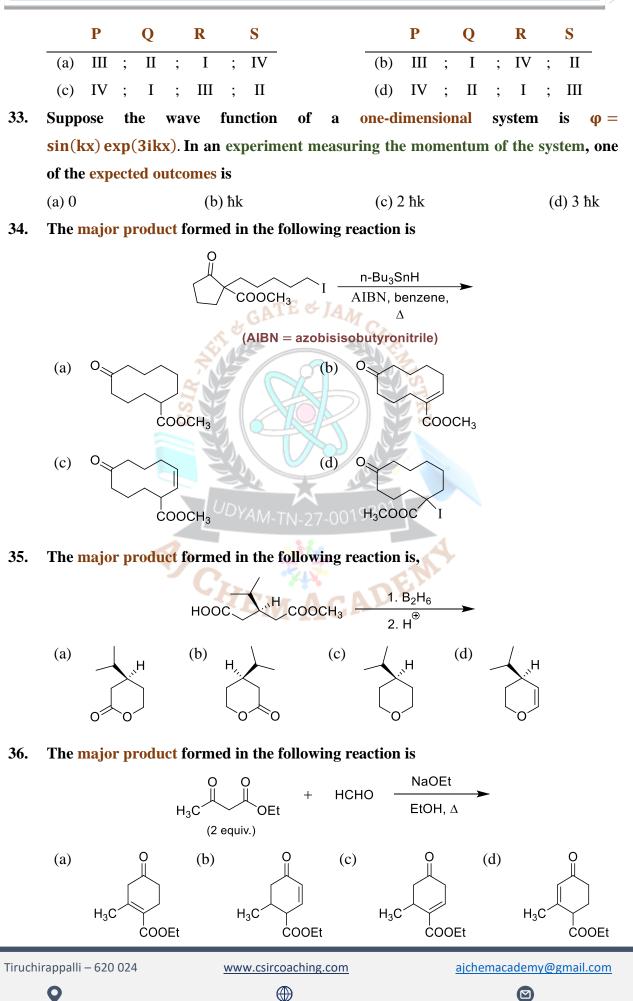
- 17. The number of CO stretching bands in IR spectrum of trigonal bipyramidal Cis-M(CO)₃L₂ is _____. (M = metal and L = monodentate ligand)
- 18. On heating a sample of 25 mg hydrated compound (molecular weight = 250 g/mol) in thermogravimetric analysis, 16 mg of dehydrated compound remains. The number of water molecules lost per molecule of hydrated compound is _____.

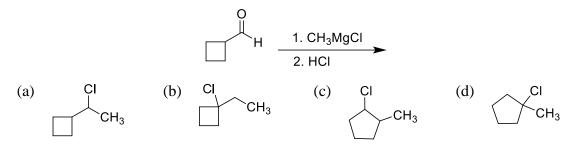
(Molecular weight of water = 18 g/mol)

4

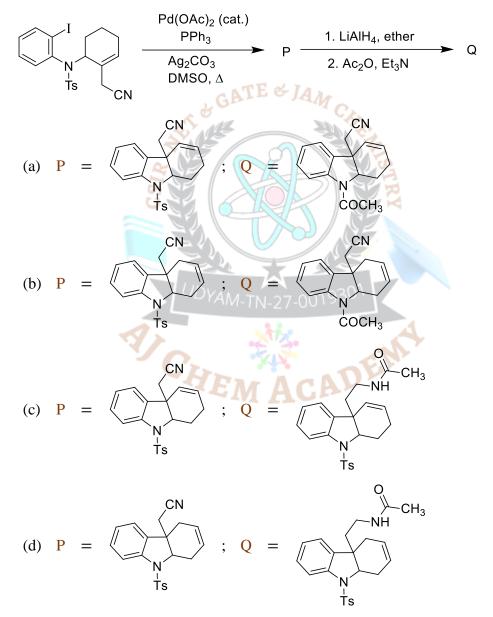
- 19. The total number of α and β particles emitted in the given radioactive decay is _____. $^{238}_{92}U \rightarrow ^{210}_{82}Pb$

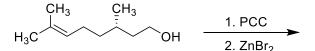
(Gas constant $\mathbf{R} = 0.082 \text{ L}$ atm mol⁻¹K⁻¹ = 2 cal mol⁻¹K⁻¹)


- 21. The entropy change for the melting of 'x' moles of ice (heat of fusion is 80 cal g⁻¹) at 273 K and 1 atm pressure is 28.80 cal K⁻¹. The value of 'x' is _____. (Round off to two decimal places) (Molecular weight of water = 18 g/mol)
- 22. Consider a two-state system at thermal equilibrium having energies 0 and 2k_BT for which the degeneracies are 1 and 2, respectively. The value of the partition function at the same absolute temperature T is _____. (Round off to two decimal places)
 - $(\mathbf{k}_{B} \text{ is the Boltzmann constant})$
- 23. Consider a system of three identical and distinguishable non-interacting particles and three available nondegenerate single particle energy levels having energies 0, ε and 2 ε . The system is in contact with a heat bath of temperature T K. A total energy of 2 ε is shared by these three particles. The number of ways the particles can be distributed is _____.
- 24. In a 400 MHz ¹H-NMR spectrometer, a proton resonates at 1560 Hz higher than that of tetramethylsilane. The chemical shift value of this proton is _____ ppm. (Round off to one decimal place & Chemical shift of TMS is fixed at zero ppm)
- 25. Gas phase bond length and dipole moment of a compound (MX) is 3 Å and 10.8 D, respectively. The ionic character in gas phase MX is _____%.


$\mathrm{GATE}-2019-\mathrm{CY}$

	(Rou	nd off to one o	lecimal place & 1D =	3.330	$5 \times 10^{-30} \text{ Cm}$						
	Q.26 – Q.44 Multiple Choice Question (MCQ), carry TWO marks each										
	<u>(for each wrong answer: – 2/3).</u>										
26.	The	The experimentally observed magnetic moment values, which match well with the									
	spin-only values for the pair of aqueous ions is										
	(Atomic number: Cr = 24, Co = 27, Gd = 64, Tb = 65, Dy = 66 and Lu = 71)										
	(a) C	r(III) and Gd(I	II)		(b) Co(II) a	nd Gd (III)					
	(c) C	r(III) and Dy(I	II)		(d) Lu(III)	and Tb(III)					
27.	Amo	ng the followi	ng compounds, a <mark>norm</mark>	al spi	nel is						
	(a) M	IgFe ₂ O ₄	(b) ZnFe_2O_4		(c) $CoFe_2O_4$	(d) $CuFe_2O_4$					
28.	. Following are the examples of silicate minerals										
	Ziı	rcon, ZrSiO ₄	Beryl, Be ₃ Al ₂ Si ₆ O ₁₈	B M	Pyrophyllite, Al ₂ ($[OH)_2[(Si_2O_5)_2]$					
		Ι			III STA	[
	The	correct structu	ral description of the	miner	als is 🗧						
		I 🥿		1	III						
	(a)	Ortho silicate	; Cyclic silicate	and	Sheet silicate						
	(b)	Ortho silicate	; Sheet silicate	and	Cyclic silicate						
	(c)	Cyclic silicate	e; Sheet silicate 7	and	Ortho silicate						
	(d)	Sheet silicate	; Ortho silicate	and	Cyclic silicate						
29.			um of a methyl radic			es and their relative					
	inten	isities, respecti	(b) 3 and 1:2:1	C.A	DP						
	(a) 1	and 1	(b) 3 and 1:2:1	(0	c) 4 and 1:2:2:1	(d) 4 and 1:3:3:1					
30.	The	product obtain	ned in the reaction of N	1n ₂ (C	$(0)_{10}$ with Br_2 is						
	(a) M	In(CO) ₅ Br	(b) $Mn_2(CO)_8Br_2$	(c)	$Mn(CO)_4Br_2$	(d) $Mn_2(CO)_9Br$					
31.	The	correct molecu	lar representation of	W(Cp	$)_2(CO)_2$ is, (Cp	= cyclopentadienyl)					
	(a) [V	$W(\eta^1 - Cp)(\eta^3 -$	$Cp)(CO)_{2}]$		(b) [W(η¹- C	p)(η ⁵ - Cp)(CO) ₂]					
	(c) [\	<i>W</i> (η ³ - Cp)(η ⁵ -	$Cp)(CO)_2]$		(d) [W(η ⁵ - C	$(p)_2(CO)_2$					
32.	Mato	ch the metallo	proteins with their resp	pectiv	e functions.						
		Р.	Ferritin	I.	Electron transfe	er					
		Q.	Rubredoxin	II.	Acid-base catal	ysis					
		R.	Cobalamin	III.	Metal storage						
		S.	Carbonic anhydrase	IV.	Methyl transfer	•					



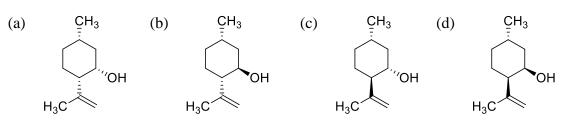

37. The major product formed in the following reaction is

38. In the following reaction sequence, the products P and Q are

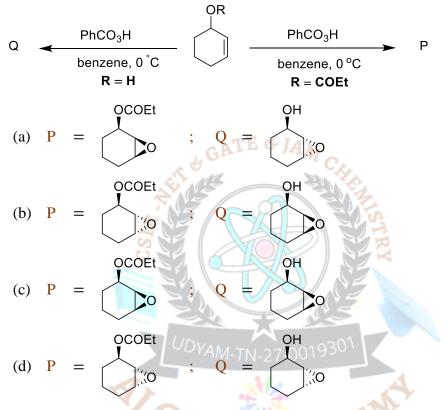
39. The major product formed in the following reaction is

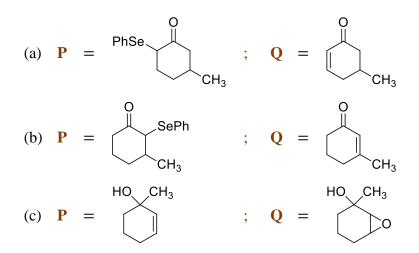
(PCC = Pyridinium chlorochromate)

Tiruchirappalli – 620 024


www.csircoaching.com

ajchemacademy@gmail.com



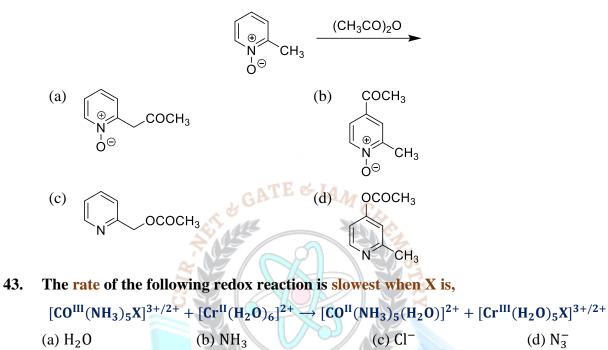


40. In the following reactions, the major products P and Q are

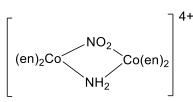
41. In the following reaction sequence, the products P and Q are

$$\bigcirc \qquad \underbrace{1. (CH_3)_2 CuLi}_{2. PhSeBr} P \xrightarrow{H_2O_2} Q$$

Tiruchirappalli – 620 024


0

ajchemacademy@gmail.com

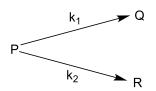

42. The major product formed in the following reaction is

44. A complex is composed of one chromium ion, three bromides and six water molecules. Upon addition of excess AgNO₃, 1.0 g aqueous solution of the complex gave 0.94 g of AgBr. The molecular formula of the complex is,

(Atomic weight:
$$Cr = 52$$
, $Br = 80$, $Ag = 108$, $0 = 16$ and $H = 1$)
(a) $[Cr(H_20)_6]Br_3$ (b) $[Cr(H_20)_5Br]Br_2$. H_20
(c) $[Cr(H_20)_4Br_2]Br. 2H_20$ (d) $[Cr(H_20)_3Br_3]. 3H_20$
Q.45 – Q.55 Numerical Answer Type (NAT), carry TWO marks each
(no negative marks).

45. The number of possible optically active isomer(s) for the following complex is ____. (en = ethylenediamine)

46. The specific rotation of optically pure (R)-2-bromobutane is −112.00. A given sample of 2-bromobutane exhibited a specific rotation of −82.88. The percentage of (S)-(+)-enantiomer present in this sample is _____.


Tiruchirappalli – 620 024

9

 \bigoplus

47. Consider the following two parallel irreversible first order reactions at temperature T,

where k_1 and k_2 are the rate constants and their values are 5×10^{-2} and 15×10^{-2} min⁻¹, respectively, at temperature T. If the initial concentration of the reactant 'P' is 4 mol L⁻¹, then the concentration of product 'R' after 10 min of reaction is ______ mol L⁻¹. (Round off to two decimal places)

(Assume only P is present at the beginning of the reaction) Consider the following equilibrium

 $SO_{2(g)} + \frac{1}{2}O_2 - SO_{3(g)}$

At 298 K, the standard molar Gibbs energies of formation, $\Delta_f G^0$, of $SO_2(g)$ and $SO_3(g)$ are -300 and -371 kJ mol⁻¹, respectively. The value of the equilibrium constant, K_P , at this temperature is $x = 10^{10}$.

(Round off to the nearest integer & Gas constant $R = 8.31 \text{ J mol}^{-1}\text{K}^{-1}$) Consider the electrochemical cell: $M_{(s)} \left| MI_{2(s)} \right| MI_{2(a0)} \left| M_{(s)} \right|$.

where 'M' is a metal. At 298 K, the standard reduction potentials are $E_{M^{2+}(aq)/M_{(s)}}^{0} = -0.12 \text{ V}, E_{MI_{2(s)}/M_{(s)}}^{0} = -0.36 \text{ V}$ and the temperature coefficient is $\left(\frac{\partial E_{cell}^{0}}{\partial T}\right)_{p} = 1.5 \times 10^{-4} \text{ VK}^{-1}$. At this temperature the standard enthalpy change for the overall cell reaction, $\Delta_{r}H^{0}$, is ______kJ mol^{-1}.

(Round off to two decimal places & Faraday constant $F = 96500 \text{ C mol}^{-1}$)

- 50. The normal boiling point of a compound (X) is 350 K (heat of vaporization, $\Delta_{vap}H = 30 \text{ kJ mol}^{-1}$). The pressure required to boil 'X' at 300 K is _____ Torr. (Round off to two decimal places & Ignore the temperature variation of $\Delta_{vap}H$) (Gas constant R = 8.31 J mol⁻¹K⁻¹ and 1 atm = 760 Torr)
- 51. For a bimolecular gas phase reaction $P + Q \rightarrow R$, the pre-exponential factor is $1 \times 10^{13} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. The standard entropy of activation at 25°C is _______JK^{-1} mol^{-1}. (Round off to two decimal points)

(The standard concentration $c^{o} = 1 \text{ mol } dm^{-3}$; Planck constant $h = 6.62 \times 10^{-3}$

Tiruchirappalli – 620 024

◙

48.

49.

10⁻³⁴ Js; Boltzmann constant $k_B = 1.38 \times 10^{-23}$ J K⁻¹; Gas constant R = 8.31 J mol⁻¹K⁻¹)

E	2C ₈	2C ₄	2C ³ ₈	C ₂	4C ₂ '	4C ["] ₂
a	1	1	1	1	1	1
b	1	1	1	1	h	i
с	-1	1	-1	1	1	j
d	-1	1	-1	1	-1	1
e	$\sqrt{2}$	0	$-\sqrt{2}$	-2	0	0
f	0	reel	0	k	0	0
g	$-\sqrt{2}$	0	$\sqrt{2}$	-2	0	0
	a b c d e f	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a 1 1 b 1 1 c -1 1 d -1 1 e $\sqrt{2}$ 0 f 0 -2	a 1 1 1 b 1 1 1 c -1 1 -1 d -1 1 -1 e $\sqrt{2}$ 0 $-\sqrt{2}$ f 0 -2 0	a 1 1 1 1 b 1 1 1 1 c -1 1 -1 1 d -1 1 -1 1 e $\sqrt{2}$ 0 $-\sqrt{2}$ -2 f 0 -2 0 k	a 1 1 1 1 1 b 1 1 1 1 1 h c -1 1 -1 1 1 h d -1 1 -1 1 -1 1 e $\sqrt{2}$ 0 $-\sqrt{2}$ -2 0 f 0 -2 0 k 0

52. Character table of point group D_8 is given below.

Value of (a + b + c + d + e + f + g + h + i + j + k) is equal to _____.

53. If $\langle \alpha | \widehat{S_x} \widehat{S_y} - \widehat{S_y} \widehat{S_x} | \alpha \rangle = -i\hbar^2 a$ where $\widehat{S_x}$ and $\widehat{S_y}$ are spin angular momentum operators and $|\alpha\rangle$ is spin up eigen function, then the value of 'a' is _____.

(Round off to one decimal place)

54. A particle in one dimensional box of length 2a with potential energy

$$U_{DYAM} \mathbf{v} = \begin{cases} \mathbf{0} & |\mathbf{x}| < \mathbf{a} \\ \mathbf{\omega} \cdot \mathbf{0} & |\mathbf{x}| > \mathbf{a} \end{cases}$$

is perturbed by the potential V' = cx eV, where c is a constant. The 1st order correction to the 1st excited state of the system is _____ × c eV.

55. Consider a two-dimensional harmonic oscillator with angular frequency $\omega_x = 2\omega_y = 6.5 \times 10^{14} \text{rad s}^{-1}$. The wavelength of x polarized light required for the excitation of a particle from its ground state to the next allowed excited state is $__ \times 10^{-6}$ m. (Round off to one decimal place)

(Speed of light $c=3.0\times 10^8\,m\,s^{-1})$

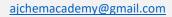
Q.No	Ans	Q.No	Ans	Q.No	Ans
1.	d	21.	5.40 to 5.55	41.	b
2.	b	22.	1.25 to 1.30	42.	С
3.	d	23.	6	43.	b
4.	а	24.	3.9	44.	b
5.	b	25.	74 to 76	45.	2

Answer Key

Tiruchirappalli – 620 024

www.csircoaching.com

$\mathrm{GATE}-2019-\mathrm{CY}$


6.	b	26.	a	46.	13
7.	b	27.	b	47.	2.50 to 2.65
8.	а	28.	а	48.	265 to 295
9.	b	29.	d	49.	−38 to − 37
10.	d	30.	a	50.	135 to 137
11.	b	31.	с	51.	-12.9 to -12.4
12.	b	32.	b	52.	9
13.	с	33.	с	53.	0.5
14.	4	34.	a	54.	0
15.	5	35.	b	55.	2.8 to 3.0
16.	5	36.	d		
17.	3	37.	d		
18.	5	38.	С		
19.	11	39.	С		
20.	-126 to -120	40.	b		

© No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.

- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So, we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.
- © இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜே கெம் அகாடமியின் முன் அனுமதியின்றி எந்த நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்பு செய்யவோ அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக்குறைவாக ஊடுருவியிருக்கலாம். எனவே, அவற்றிற்கு நாங்கள் எந்த சட்டப் பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

Tiruchirappalli – 620 024

О

