

JAM – Chemistry - 2007

www.csircoaching.com

- ✓ CSIR-NET & SLET | SET Chemistry Coaching
- ✓ University Chemistry Entrance (PhD | PG)
- ✓ GATE Chemistry Coaching
- ✓ CUET-PG & JAM Chemistry Coaching

Features								
\succ 300 ++ Live Classes	A Well-Defined Curriculum							
\succ 200 ++ Concept Wise Tests	A Strong Subject Foundation							
\succ 50 ++ Chapter Wise Tests	A Refined Learning Methodology							
\succ 50 ++ Model Tests	Updated Study materials							
> 2000 ++ Problem Discussions	 Freshers Can easily understand 							
Recorded Videos	Question banks							

Tiruchirappalli – 620 024

www.csircoaching.com

ajchemacademy@gmail.com

Attempt ALL the questions. Q.1 – Q.30 Multiple Choice Question (MCQ), carry THREE marks each (for each wrong answer: –1).

- 1. In the extraction of metals from their ores, which one of the following reduction methods can bring about a non-spontaneous reduction?
 - (a) electrolytic reduction (b) reduction by carbon
 - (c) reduction by another metal (d) reduction by hydrogen
- 2. The solid-liquid phase diagram for the Mg-Zn system is shown in the figure below where the vertical line at X(Mg) = 0.33 represents the formation of a congruent melting compound MgZn₂. The figure is divided into seven regions depending upon the physical state of the system. The composition of the region #6 represents

- (a) single phase of a solution of Mg and Zn
- (b) two phase region between the solid Zn and solid $MgZn_2$
- (c) two phase region between the liquid and solid MgZn₂
- (d) two phase region between solid Mg and solid MgZn₂
- 3. Which one of the following species is the conjugate base of OH⁻?
 - (a) $H_2 0$ (b) 0^{2-} (c) 0_2^{-} (d) 0_2^{2-}
- 4. The plot of Gibb's free energy G and the extent of a reaction ξ is given below for the reaction $A \rightleftharpoons B$. If μ_A and μ_B are the chemical potentials of A and B respectively, the **INCORRECT** statement is

8. Which one of the following compounds gives positive test for both nitrogen and halogen with its Lassaigne's extract?

(a) CH₃NH₂. HCl (b) NH₂OH. HCl (c) NH₄Cl (d) H₂NNH₂. HCl

9. The correct order of dipole moments (μ) of the following compounds is CH₃CH₂CH₂CHO CH₃CH=CHCHO CH₃CH₂CH=CH₂

Р Q R (a) μ_P μο (b) μ_Q > μ_R μ_R μ_P 2

5.

6.

7.

(a)

CI

- (c) $\mu_R > \mu_P > \mu_Q$ (d) $\mu_Q > \mu_P > \mu_R$
- 10. An aqueous solution containing 0.01 M FeCl₃ and 0.06 M HClO₄ has the same ionic strength as a solution of
 - (a) 0.09 M NaCl (b) 0.04 M Na₂SO₄ (c) 0.06 M CuSO₄ (d) 0.03 M H₃PO₄
- 11. Which one of the following figures, showing kinetic energy of the ejected electron versus the frequency (v) of the incident photon, represents the Einstein's photoelectric effect?

- 12. The standard potential of a Daniel cell is +1.10 V and the equilibrium constant for the cell reaction is 1.5×10^{37} . It can be concluded that
 - (a) zinc oxidises copper
 - (b) displacement of copper by zinc goes to near completion
 - (c) copper oxidises zinc
 - (d) displacement of zinc by copper goes to completion
- 13. The main product obtained in the following reaction is

ajchemacademy@gmail.com

14. Which one of the following compounds reacts with nitrous acid to give the product [P]?

- (c) $Rb^+ > In^{3+} > Sr^{2+} > Sn^{4+}$
- (d) $Rb^+ > Sr^{2+} > In^{3+} > Sn^{4+}$
- 22. The normalization constant 'A' for the wavefunction $\Psi(\varphi) = Ae^{(im\varphi)}$ where $0 \le \varphi \le 2\pi$ is

(a)
$$\frac{1}{\sqrt{2\pi}}$$
 (b) $\sqrt{2\pi}$ (c) 2π (d) $\frac{1}{\sqrt{2}}$

23. The pH of a 1.0×10^{-3} M solution of a weak acid HA is 4.0. The acid dissociation constant K_a is

(a)
$$1.0 \times 10^{-3}$$
 (b) 1.0×10^{-4} (c) 1.0×10^{-5} (d) 2.0×10^{-5}

24. The overlap between the atomic orbitals sketched below is

29. The compounds that react with aqueous $NaHCO_3$ to release CO_2 are

JAM - 2007 - CY

6

Identify the structures of the intermediate compounds Q, R and S. Show the transformation for each step.

32. (a) For the following scheme of transformations, draw the structures of A, B, C

- (b) Complete hydrolysis of a pentapeptide with 6 N HCl at 110 °C in a sealed tube gave 2 equivalents of glycine, one equivalent each of tyrosine, leucine and phenylalanine. Reaction of the pentapeptide with Sanger's reagent (2, 4dinitrofluorobenzene, DNFB) and subsequent hydrolysis gave the DNFB derivative of tyrosine. Chymotrypsin cleavage of this peptide yielded tyrosine, leucine and a tripeptide. Deduce the sequence of the pentapeptide.
- 33. Complete the following reactions with appropriate structures for E, F, G, H & I.
 (a) CO₂Et

(b)
$$(H) \xrightarrow{NaNO_2/HCI} (H) \xrightarrow{Zn/AcOH} (F) \xrightarrow{O} (I)$$

34. (a) Account for the following transformation with an appropriate mechanism. Give the structure of the Hofmann exhaustive methylation product of 1, 2dihydro derivative of [X].

(b) The optically pure ester [J] is hydrolysed in aqueous acetic acid to form a racemic mixture of cis-4, 4-dimethyl-2-acetoxycyclopentanol [K]. Give a mechanistic explanation to account for the formation of [K] and the observed change in the optical activity.

35. (a) M is a first row transition metal. MCl₂ on treatment with aqueous ammonia gives a blue colored solution of complex N. A solution of MCl₂ also gives a bright red precipitate of complex O with ethanolic dimethylglyoxime.

Tiruchirappalli - 620 024

- (i) Identify M and draw the structure of O.
- (ii) Determine the hybridization of M in complex N.
- (iii) Identify the paramagnetic complex.
- (b) $[Cr(H_2O)_6]^{3+}$ gave an absorption at 208 KJ/mol which corresponds to Δ_0 . Calculate the crystal field stabilisation energy of this complex in KJ/mol.
- 36. (a) Consider the ethers SiH₃OSiH₃ and CH₃OCH₃.
 - (i) Which ether has more Lewis base character?
 - (ii) Which angle [Si-O-Si and C-O-C] is greater? Justify your answer.
 - (b) Starting from SiO₂, show how the following polymer is prepared industrially?

- (b) Why are potassium permanganate solutions unstable in the presence of Mn²⁺ ions? In the quantitative estimation of iron present in iron ores dissolved in dilute HCl, titrations with dichromate are preferred over titrations with permanganate. Rationalise.
- 38. (a) Al₂Cl₆ and Al₂Me₆ are dimeric in gas phase. Draw their structures. Which compound has more Lewis acid character? Explain.
 - (b) Arrange the halides SnCl₂, PbCl₂, SiCl₂ in increasing order of their stability. Give reasons for your answer.
- 39. (a) Acidification of an aqueous solution of yellow sodium chromate gives an orange-colored compound-A. A saturated solution of A on treatment with concentrated H_2SO_4 gives a bright orange solid B. Compound A in the presence of concentrated H_2SO_4 reacts with anion C to give a deep red colored liquid. Identify A, B and C.
 - (b) $^{215}_{84}$ Po undergoes an α emission to give element X followed by a β emission to give element Y.
 - (i) Write the valence shell electronic configuration of Y.

- (ii) Indicate the groups of the periodic table to which X and Y belong.
- 40. (a) When an ideal monoatomic gas is expanded from 1. 5 bar, 24.8 L and 298 K into an evacuated container, the final volume becomes 49.6 L. Calculate ΔH, ΔS and ΔG for the process.
 - (b) The Maxwell distribution function for the distribution of speeds of molecules in gaseous systems is given as,

$$f(c) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} c^2 exp \left(\frac{-mc^2}{2kT}\right)$$

Show that the most probable speed, $c_{mps} = (2kT/m)^{1/2}$

41. (a) At 600 K and 200 bar, a 1:3 (molar ratio) mixture of A_2 and B_2 react to form an equilibrium mixture containing $x_{AB_3} = 0.60$. Assuming ideal gas behaviour, calculate K_p for the reaction

$$A_2(g) + 3B_2(g) \rightleftharpoons 2AB_3(g)$$

(b) A 50 ml 0.05 M solution of Fe(II) is titrated with 0.05 M solution of Ce(IV) in the presence of dilute H_2SO_4 at 25 °C. Calculate the equivalence point potential and the equilibrium constant K in terms of log K.

 $[E^{0}(Fe^{3+}/Fe^{2+}) = +0.75 V, E^{0}(Ce^{4+}/Ce^{3+}) = +1.45 V]$

- 42. (a) The vapour pressure of D₂O at 20 °C is 745 mm Hg. When 15 g of a non-volatile compound is dissolved in 200 g of D₂O, the pressure changes to 730 mm Hg. Assuming the applicability of Raoult's law, calculate the molecular weight of the compound.
 - (b) An enzyme following Michaelis-Menten kinetics was found to have highest activity at 37 °C and pH 7.0. If the maximum velocity v_{max} for this enzyme was 2.4×10^{-4} mol L⁻¹s⁻¹ with an initial enzyme concentration $[E]_0 = 2.4$ nM, calculate the turnover frequency.
- 43. (a) Consider the 4π electrons in cyclobutadiene to be free particles in a 2-D square box of length 2Å. Calculate the wavelength of the electronic transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). Also write down the normalised wavefunctions for the occupied degenerate states.
 - (b) The reaction

ً⊘

$$\overbrace{\text{cis}}^{k_1} \overbrace{k_{-1}}^{k_1} trans$$

is first order in both directions. At 25 °C, the equilibrium constant (K) of this reaction is 0.40. If 0.115 mol.dm⁻³ of cis-isomer is allowed to equilibrate, calculate the equilibrium concentration of each isomer.

44. (a) With i, j and k as the unit vectors along X, Y and Z axes, express the vector $\overrightarrow{P_1P_2}$ in the given figure in terms of the coordinates of P₁ and P₂. Also determine the dot products of the unit vectors i, j, k.

(b) Deduce whether the matrices A and B commute or not.

 $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$

$$\mathbf{B} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Answer Key

Q.No	Ans	Q.No	Ans	EM	Q.No	Ans	Q.No	Ans
1.	b	9.	d		17.	b	25.	С
2.	d	10.	b		18.	d	26.	С
3.	b	11.	а	10	19.	b	27.	С
4.	С	12.	b		20.	С	28.	а
5.	d	13.	а		21.	d	29.	b
6.	С	14.	а		22.	а	30.	b
7.	d	15.	d		23.	С		
8.	а	16.	С		24.	а		

- © No Part of this Question Paper shall be reproduced, reprinted or Translated for any purpose whatsoever without prior permission of AJ Chem Academy.
- © Inspite of best efforts taken to present this Work without mistakes, some mistakes may have inadvertently crept in. So we do not take any legal responsibility for them. If they are brought to our notice, corrections will be done in next edition.

JAM – 2007 – CY

- C இந்த வினாத்தாளின் எந்தப் பகுதியும் ஏஜே கெம் அகாடமியின் முன் அனுமதியின்றி எந்த செய்யவோ நோக்கத்திற்காகவும் மீண்டும் உருவாக்கப்படவோ, மறுபதிப்பு அல்லது மொழிபெயர்க்கவோ கூடாது.
- © இந்த படைப்பை பிழையின்றி வழங்குவதற்கு சிறந்த முயற்சிகள் எடுக்கப்பட்டாலும், சில தவறுகள் கவனக்குறைவாக ஊடுருவியிருக்கலாம். எனவே அவற்றிற்கு நாங்கள் எந்த சட்டப் பொறுப்பையும் ஏற்கவில்லை. அவற்றை எங்கள் கவனத்திற்கு கொண்டு வந்தால், அடுத்த பதிப்பில் திருத்தங்கள் செய்யப்படும்.

Tiruchirappalli – 620 024

0

